470 likes | 663 Views
Primordial Disks: From Protostar to Protoplanet. Jon E. Bjorkman Ritter Observatory. Cloud Cores. Bok Globule: Isolated Cloud Core. Theorist’s Cloud Core. Star Formation. Within Cloud Cores gravity overcomes gas pressure gas must be cold cores collapse Free-fall
E N D
Primordial Disks: From Protostar to Protoplanet Jon E. Bjorkman Ritter Observatory
Star Formation • Within Cloud Cores • gravity overcomes gas pressure • gas must be cold • cores collapse • Free-fall • Inside out (Shu 1977) • Form protostars • rotation • Cloud flattens into disk • material falls on disk • protostar • accretes material from disk
Rotating Infall • Streamlines follow ballistic trajectories • Ulrich (1976); Cassen & Moosman; Terebey, Shu, & Cassen (1984) Keto
Accretion with Rotation • Accretion termination shock above/below disk surface • Material added at centrifugal radius (orbital periastron) • Centrifugal radius grows with time Keto
Disk Winds • Magneto-Centrifugal • Blandford & Payne (1982) • Pudritz & Norman (1983) • Magnetospheric • X Wind (Shu et al. 1994) Matt 2005
T Tauri SED • IR Excess • Starlight reprocessed by disk (passively irradiated disk) • Ldisk ~ 1/4 Lstar • Shape determined by temperature vs radius • UV excess • Disk-Star boundary layer / accretion shock • Causes “veiling” of spectral lines Adams, Lada, & Shu 1987
SED Classification • Class 0-III • Adams, Lada & Shu 1987 • Class 0: • Mostly sub-mm emission • Deeply embedded protostars • Class I: • Rising SEDs from 2 to 100 mm • Protostars still accreting from infalling envelope • Class II (Classical T Tauri): • Falling IR SEDs • Stars surrounded by disks • Class III (Weak-lined T Tauri): • Little IR excess • Almost no circumstellar material
Star/Disk Formation Sequence Class 0 Class I Class II Class III Debris Disks
Keplerian (Orbiting) Disks • Fluid Equations • Vertical scale height (Keplerian orbit) (Hydrostatic) (Scale height)
Disk Temperature Adams, Lada, & Shu 88Flat Reprocessing Disk Kenyon & Hartman 87Flared Reprocessing Disk
Flaring Effects:Disk Temperature & SED Near IR Far IR log wavelength (micron) Kenyon & Hartmann 87
Viscous Accretion Disk • Sources of Viscosity • Eddy Viscosity (Shakura & Sunyaev 1977) • Magneto-Rotational Instability (Balbus & Hawley 1991) requires slight ionization • Possible dead zones in disk interior Lee, Saio, Osaki 1991
Viscosity in Keplerian Disks • Viscosity • Diffusion Timescale (eddy viscosity) Lynden-Bell & Pringle 1974
Steady State Accretion a-Disks (Keplerian orbit) (continuity eq.) (surface density) (hydrostatic) (scale height)
Power Law Approximations • Keplerian Accretion Disk • Flaring
3-D Monte Carlo Radiation Transfer • Divide stellar luminosity into equal energy packets • Pick random starting location and direction • Transport packet to random interaction location • Randomly scatter or absorb photon packet • When photon escapes, place in observation bin (frequency and direction) REPEAT 106-109 times
MC Radiative Equilibrium • Sum energy absorbed by each cell • Radiative equilibrium gives temperature • When photon is absorbed, reemit at new frequency, depending on T
Monte Carlo Disk Temperature Whitney, Indebetouw, Bjorkman, & Wood 2004
Radial Temperature Structure Optically thin T ~ r-0.4 Surface Snow Line: Water Ice Methane Ice Midplane
Vertical Temperature Structure Dullemond
3-D Temperature Effects • At large radii • outer disk is shielded by inner disk • temperatures lowered at disk mid-plane • Surface layers • Heat up to optically thin dust temperature (Chiang & Goldreich 97) • Upper layers “puff up” • Inner edge of disk • Heats up to optically thin dust temperature • Inner edge “puffed up” (relative to flat disk) • Shadows disk behind inner wall
Effect of Inner Wall Dullemond, Dominik, & Nata 01
Disk Self-Shadowing Dullemond, Dominik, & Nata 01 Dullemond 02
Protostar Evolutionary Sequence Spectrum Density Mid IR Image Whitney, Wood, Bjorkman, & Cohen 2003 i =80 i =30
Protostar Evolutionary Sequence Mid IR Image Spectrum Density i =80 i =30 Whitney, Wood, Bjorkman, & Cohen 2003
Disk Evolution: Decreasing Mass Wood, Lada, Bjorkman, Whitney & Wolff 2001
Forming Planets: Standard Model • Dust grains stick together • form rocks • Grow into planetesimals • some still survive today • Asteroids & comets • Larger planetesimals attract smaller ones (gravity) • Planetesimals accrete • form planet cores
Dust Processing in Disks • Gravity causes dust settling toward mid-plane • ~104 yr • Grain Growth • Grain size increases with disk age? • Ice Condensation • dust may be coated with ice • Dust Removal • Radiation Pressure • Poynting Robertson Effect • Gas Drag • Accretion onto star (or planets) • Blown away by stellar / disk wind • Evaporation (when dust gets too hot)
Dust Opacity • Mie Scattering Opacity • Dust has a particle size distribution
Dust Opacity Wood, Wolff, Bjorkman, & Whitney 2001
Evidence for Grain Growth ISM Dust Grains Large Dust Grains (1mm) Wood, Wolff, Bjorkman, & Whitney 2001 Bjorkman, Wood, & Whitney
Cotera et al. 2001 Evidence for Grain Growth Large Grain Models Small Grain Model HH30 Observations Wood et al. 1998
Evidence for Dust Settling • Observed scale height < thermal value • Self-Shadowed Disks? • Dust settling reduces opacity in disk surface layers • Reduced absorption in surface layers reduces disk heating • Causes outer disk collapse, producing fully self-shadowed disk
Transition Disks:GM AUR SED • Inner Disk Hole Size = Jupiter’s Orbit Rice et al. 2003
Planet Hole-Clearing Model Rice et al. 2003
Planetary Gaps Kley 1999
Gap Structure Bjorkman et al. 05
Predicted Gap Images Bjorkman et al. 05
Predicted Gap SED Gap Only Gap + Inner Hole Varniere et al. 2004