1 / 25

A folytonosság és a digitális számítógép (Egy elemi megközelítés)

Continuum and Digital Computer (An elementary Approach) J. PEREDY Dr. Habil. Prof. Em. A folytonosság és a digitális számítógép (Egy elemi megközelítés) Discrete and Continuous: Two sides of the same? László Lovász Microsoft Research,

ifama
Download Presentation

A folytonosság és a digitális számítógép (Egy elemi megközelítés)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Continuum and Digital Computer(An elementary Approach) J. PEREDY Dr. Habil. Prof. Em. • A folytonosság és a digitális számítógép (Egy elemi megközelítés) • Discrete and Continuous: Two sides of the same? • László Lovász • Microsoft Research, • One Microsoft Way, Redmond, WA 98052

  2. Continuum and Digital Computer(An elementary Approach) J. PEREDY Dr. Habil. Prof. Em. • Idézetek Lovász professzor hivatkozott cikkéből: A matematikai problémák fő külső forrása a tudomány. A hagyományos szemlélet szerint a tér és az idő folytonos. A matematikai analízis a tudomány kemény magja.

  3. Continuum and Digital Computer(An elementary Approach) J. PEREDY Dr. Habil. Prof. Em. • Idézetek Lovász professzor hivatkozott cikkéből: Van-e értelme az elemi események közötti időpontnak? Lehetséges, hogy a világnak folytonos vagy (óriási) diszkrét rendszer- ként valóleírása egyenértékű?

  4. Continuum and Digital Computer(An elementary Approach) J. PEREDY Dr. Habil. Prof. Em. • Idézetek Lovász professzor hivatkozott cikkéből: A számítógépek világa diszkrét. Azt hiszem, hogy a problémák valódi megértése a diszkrét és a foly- tonos szintézisét igényli.

  5. Continuum and Digital Computer J.PEREDY Dr. Habil. Prof. Em. A számítógépet használó épí-tész számára a folytonos és a diszkrét leírás különbözősége markánsan jelentkezik pl. a folytonos görbék raszter kép-ernyőn való megjelenítése során.

  6. Continuum and Digital Computer J.PEREDY Dr. Habil. Prof. Em. A digitális számítógépek diszkrét jellegének alpvető kö-vetkezménye, hogy velük tulajdonképpeni valós számok nem fejezhetők ki. Nevezetesen bármely két valós szám között vannak további valós számok, a véges hoszszú-ságú regiszterekben történő számábrázolás esetén azon-ban ez nem valósulhat meg: “véges regiszterek” . . . “fixpontos számok” “lebegőpontos számok”

  7. Continuum and Digital Computer J.PEREDY Dr. Habil. Prof. Em. Kiséreljük meg valamely két-méretű kontinuum egy véges részének és az ezen értelmez-hető görbéknek egy kombi-nált, diszkrét-folytonos vizs-gálatát. Tekintsük a pi,j disz-krét elemek egy kétméretű vé-ges elrendezését. A diszkrét e-lemek mindegyike feleljen meg a véges síkrész egy-egy egység-négyzetének, „pixelé-nek”.

  8. Continuum and Digital Computer J.PEREDY Dr. Habil. Prof. Em. Két diszkrét elem szom-szédos ha csak az egyik indexük különbözik, s a különbség 1. Más szóval, két pixel szomszédos, ha egy oldaluk közös. Diszkrét görbe diszkrét elemek sorszámozással ellátott olyan sorozata, ahol az egymást követő elemek szomszédosak:

  9. Continuum and Digital Computer J.PEREDY Dr. Habil. Prof. Em. Egy diszkrét görbe repre-zentálja mindazokat a foly-tonos görbéket, amelyeket le-fed. Bármely folytonos gör-bének megfelel egy diszkrét görbe, amely éppen lefedi. Diszkrét görbe megadható a hozzátartozó pixelek felsoro-lásával. Célszerűbb csak a kezdőpixelt megadni és a bejárás lépéseit felsorolni: i 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 10,11,11,11,12,13,14,14,... j: 4, 5, 6, 6, 7, 7, 8, 9, 9,10,10,11,11,12,12,13,13,14,14,14,14,15,14,14,14,14,13,... (1,4),+y, y,+x, y, x, y, y, x, y, x, y, x, y, x, y, x, y, x, x, x, y, –y, x, x, x, y,...

  10. Continuum and Digital Computer J.PEREDY Dr. Habil. Prof. Em. A diszkrét görbéket az oszlopa-ik első pixeleivel is jellemez-hetjük. Ha a diszkrét görbének van(nak) nem monoton oszlo-pa(i), akkor a teljes jellemzés-hez még ezek határoló pixe-le(i) is hozzáértendő(k). A zölddel jelölt (i’,j’) és (i,j) pixelek különbsége az interval- lum-aritmetika szabályai szerint a következő négy pixel együttese: (i’-i, j’-j),(i’-i+1, j’-j), (i’-i, j’-j+1),(i’-i+1, j’-j+1). (Zölddel keretezve.)

  11. Continuum and Digital Computer J.PEREDY Dr. Habil. Prof. Em. A diszkrét elemek kü-lönbségnek képzésére be-mutatott „négypixeles” szabály a diszkrét elemek körében maradva is iga-zolható a diszkrét elrende-zések (képek) finomításá-val és a kivonás és a fino-mítás felcserélhetőségé-nek megkövetelésvel.

  12. Continuum and Digital Computer J.PEREDY Dr. Habil. Prof. Em. A diszkrét elemek különbségnek képzésénél, ha i > i’ vagy j > j’ (vagy mindkettő), szükség van a diszkrét elrendezések ki-terjesztésére.

  13. Continuum and Digital Computer J.PEREDY Dr. Habil. Prof. Em. A függvényoszlopok különbsége pixeleik kü-lönbségeinek összes-sége. Az oszlopkülönbségek kifejezésére „vonaljele-ket” is használhatunk, amelyek a kivonandó oszlopában megjelölik a különbség sorait. E jelö-lés akkor egyértelmű, ha hozzátesszük az id=i’-i értéket.

  14. Continuum and Digital Computer J.PEREDY Dr. Habil. Prof. Em. Az oszlopkülönségeket az id értékek szerint differen-cia-osztályokba sorolva vonaljeleikkel jellemezhetjük.

  15. Continuum and Digital Computer J.PEREDY Dr. Habil. Prof. Em. Az oszlopkülönbségek helyett elegendő az oszlopjel-lemző pixelek különbségeit tekinteni, ebből az előb-biek rekonstruálhatók. Valamennyi id differenciaosz-tályhoz tartozó ilyen elrendezés együttesen az oszlopokhoz rendezett differenciál.

  16. Continuum and Digital Computer J.PEREDY Dr. Habil. Prof. Em. Az oszlopkülönbsé-gek vonaljeleit a ki-vonandó oszlopjel-lemző pixel sorában is elhelyezhetjük, azon képoszlopokat jelölve meg, amelyekkel azo-nos sorszámú sorokat foglalja el az illető oszlopkülönbség.

  17. Continuum and Digital Computer J.PEREDY Dr. Habil. Prof. Em. Az oszlopjellemző pixelek különbsé-geinek vonaljeleit szintén áthelyez-hetjük a képsorok-ba. Ez a sorokhoz rendezett differenciál.

  18. Continuum and Digital Computer J.PEREDY Dr. Habil. Prof. Em. A diszkrét görbék néhány alaptípusa. 1. Az állandó Állandó az a diszkrét görbe, amelyben a négy lehetséges lépés-irány közül csak az egyik fordul elő, más-szóval valamennyi lépésirány azonos.

  19. Continuum and Digital Computer J.PEREDY Dr. Habil. Prof. Em. A diszkrét görbék néhány alaptípusa. 2. Az egyenes Egyenes az a diszkrét görbe, amelynél a dif-ferenciál minden osz-tályában van a különb-ségi vonaljelekre il-leszkedő állandó.

  20. Continuum and Digital Computer J.PEREDY Dr. Habil. Prof. Em. A diszkrét görbék néhány alaptípusa. 3. A parabola Parabola az a diszkrét görbe, amelynél az oszlopokhoz rendezett differenciál minden osztályában van a különbségi vonaljelekre illeszkedő (pixel-)egyenes. 4. Az exponenciális diszkrét görbe Exponenciális diszkrét görbe esetén a sorokhoz rendezett differenciál minden osztályában van a különbségi vonaljelekre illeszkedő egyenes.

  21. Continuum and Digital Computer J.PEREDY Dr. Habil. Prof. Em. A bemutatott diszkrét görbék elemi összefüggése a megfelelő folytonos függvénnyel. Az y = ax + b egyenes esetén ( y’ = C ) dy = a(x + dx) + b - (ax + b) = a.dx . Az y = ax2 + bx + c parabola esetén ( y’ = A.x + B ) dy = a(x + dx) 2 + b(x + dx) + c - (ax2 + bx + c) = = 2.a.dx.x + b.dx. Az y = axexponenciális függvény esetén ( y’ = C.y ) dy = ax+dx - ax= ax.adx - ax = ax (adx -1) = (adx-1).y .

  22. Continuum and Digital Computer J.PEREDY Dr. Habil. Prof. Em. A diszkrét differenciálok bemutatott rendszerét vessük egybe egy példán a folytonos függvényekkel kapcso-latban használatos véges differencia módszerrel. Az y = axexponenciális függvényt meghatározó diffe-renciálegyenlet y’ = C.y . Az ezt (az x temgely vala-mely n.dx hosszúságú szakaszán) közelíteni kívánó legegyszerűbb differenciaegyenlet-rendszer az alábbi: ( yi+1 - yi ) / dx = C. yi ( i = 0, 1, ... n-1). A diszkrét differenciálok segítségével ezt a differencia-egyenlet-rendszert mintegy „minden lehetséges” dx ér-tékre szimultán vizsgáljuk. Így az eredmény bizonyos értelemben „pontos”.

  23. Continuum and Digital Computer J.PEREDY Dr. Habil. Prof. Em. Adiszkrét differenciálok és a korábban publikált V&AA rend-szerben szereplő additív algoritmusok kapcsolatát az összeren-dezett sorozatpárok adják. Monoton diszkrét görbék bejárása-kor az x ill. y lépések ugyanúgy következnek, ahogyan az e-gyesített sorozatban a két részsorozatból származó tagok. U1,U2, ... Uk ,...egyesített monoton sorozat I1,I2, ... Ia ,...az x lépések monoton sorozata J1,J2, ... Jb,...az y lépések monoton sorozata

  24. Continuum and Digital Computer J.PEREDY Dr. Habil. Prof. Em. A V&AA rendszer egy R értéknek az i,j egész számpárok-hoz való hozzárendelésén alapul, a monoton diszkrét gör-bét azon pixelek alkotják amelyeknek a négy sarkában kü-lönböző előjelű R értékek találhatók. Az R az összerende-zett sorozatpár alapján számítható: R = R0 +(I1 + I2 + ... +Ii ) - (J1 + J2 + ... +Jj ). Az összerendezett sorozatpárok például: - egyenest állítanak elő, ha mindkét részsorozat számtani, - parabolát, ha az egyik első, a másik másodrendű számtani, - n-ed rendű parabolát, ha az egyik első, a másik n-ed rendű számtani, - exponenciális diszkrét görbét, ha az egyik számtani, a másik mér- tani, stb. (Ez utóbbi megállapítás gyakorlati haszna korlátozott.)

  25. Continuum and Digital Computer J.PEREDY Dr. Habil. Prof. Em. A V&AA rendszerrel készült ábrán két forgásfelület áthatása látható. Mindkét meridiángör-be egyenlete c1x3 +c2x2y + c3xy2 + c4y3 + + c5x2 + c6xy + c7y2 + + c8x + c9y + c10 = 0 típusú. Az ábra teljes egészé-ben egész számok összeadásán alpuló diszkrét módszerekkel készült, igy minden részletében „garantált pontosságú”.

More Related