1 / 37

Convex Hulls

Convex Hulls. Computational Geometry, WS 2007/08 Lecture 2 – Supplementary Prof. Dr. Thomas Ottmann. Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für Angewandte Wissenschaften Albert-Ludwigs-Universität Freiburg. Area of Triangle. Underlying idea:

Download Presentation

Convex Hulls

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Convex Hulls Computational Geometry, WS 2007/08 Lecture 2 – Supplementary Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für Angewandte Wissenschaften Albert-Ludwigs-Universität Freiburg

  2. Area of Triangle • Underlying idea: • For every edge, compute between it and a given line (or point). • Sum the area in a predetermined order. • Generalizable for any polygon. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  3. Area of Triangle • Use x-axis line as reference. • Compute in clockwise order. (x1,y1) (x0,y0) (x2,y2) Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  4. Area of Triangle ½ (x1 – x0 )(y0 + y1 ) (x1,y1) (x0,y0) (x2,y2) Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  5. Area of Triangle ½ (x1 – x0 )(y0 + y1 ) + ½ (x2 – x1 )(y1 + y2 ) (x1,y1) (x0,y0) (x2,y2) Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  6. Area of Triangle ½ (x1 – x0 )(y0 + y1 ) + ½ (x2 – x1 )(y1 + y2 ) + ½ (x0 – x2 )(y2 + y0 ) (x1,y1) (x0,y0) (x2,y2) Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  7. Area of Triangle ½ (x1 – x0 )(y0 + y1 ) + ½ (x2 – x1 )(y1 + y2 ) + ½ (x0 – x2 )(y2 + y0 ) (x1,y1) (x0,y0) (x2,y2) = ½ [(x1 – x0 )(y0 + y1 ) + (x2 – x1 )(y1 + y2 ) + (x0 – x2 )(y2 + y0 )] = ½ [ x1y0 + x1y1 – x0y0 – x0y1 +x2y1 + x2y2 – x1y1 – x1y2 + x0y2 + x0y0 – x2y2 – x2y0 ] = ½ [ x1y0 + x2y1 + x0y2 – x0y1 – x1y2 – x2y0 ] Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  8. Area of Triangle (x1,y1) (x0,y0) (x2,y2) | x0 y0 1 | | x1 y1 1 | | x2 y2 1 | Area of triangle = ½ Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  9. Convex Hull – Divide & Conquer • Split set into two, compute convex hull of both, combine. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  10. Convex Hull – Divide & Conquer • Split set into two, compute convex hull of both, combine. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  11. Convex Hull – Divide & Conquer • Split set into two, compute convex hull of both, combine. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  12. Convex Hull – Divide & Conquer • Split set into two, compute convex hull of both, combine. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  13. Convex Hull – Divide & Conquer • Split set into two, compute convex hull of both, combine. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  14. Convex Hull – Divide & Conquer • Split set into two, compute convex hull of both, combine. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  15. Convex Hull – Divide & Conquer • Split set into two, compute convex hull of both, combine. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  16. Convex Hull – Divide & Conquer • Split set into two, compute convex hull of both, combine. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  17. Convex Hull – Divide & Conquer • Split set into two, compute convex hull of both, combine. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  18. Convex Hull – Divide & Conquer • Split set into two, compute convex hull of both, combine. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  19. Convex Hull – Divide & Conquer • Split set into two, compute convex hull of both, combine. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  20. Convex Hull – Divide & Conquer • Merging two convex hulls. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  21. Convex Hull – Divide & Conquer • Merging two convex hulls: (i) Find the lower tangent. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  22. Convex Hull – Divide & Conquer • Merging two convex hulls: (i) Find the lower tangent. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  23. Convex Hull – Divide & Conquer • Merging two convex hulls: (i) Find the lower tangent. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  24. Convex Hull – Divide & Conquer • Merging two convex hulls: (i) Find the lower tangent. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  25. Convex Hull – Divide & Conquer • Merging two convex hulls: (i) Find the lower tangent. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  26. Convex Hull – Divide & Conquer • Merging two convex hulls: (i) Find the lower tangent. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  27. Convex Hull – Divide & Conquer • Merging two convex hulls: (i) Find the lower tangent. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  28. Convex Hull – Divide & Conquer • Merging two convex hulls: (i) Find the lower tangent. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  29. Convex Hull – Divide & Conquer • Merging two convex hulls: (i) Find the lower tangent. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  30. Convex Hull – Divide & Conquer • Merging two convex hulls: (ii) Find the upper tangent. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  31. Convex Hull – Divide & Conquer • Merging two convex hulls: (ii) Find the upper tangent. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  32. Convex Hull – Divide & Conquer • Merging two convex hulls: (ii) Find the upper tangent. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  33. Convex Hull – Divide & Conquer • Merging two convex hulls: (ii) Find the upper tangent. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  34. Convex Hull – Divide & Conquer • Merging two convex hulls: (ii) Find the upper tangent. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  35. Convex Hull – Divide & Conquer • Merging two convex hulls: (ii) Find the upper tangent. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  36. Convex Hull – Divide & Conquer • Merging two convex hulls: (ii) Find the upper tangent. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

  37. Convex Hull – Divide & Conquer • Merging two convex hulls: (iii) Eliminate non-hull edges. Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann

More Related