350 likes | 569 Views
Monodromy & Excited-State Quantum Phase Transitions in Integrable Systems Collective Vibrations of Nuclei. Pavel Cejnar Institute of Particle & Nuclear Physics, Charles University, Prague cejnar@ipnp.troja.mff.cuni.cz. NIL DESPERANDUM !.
E N D
Monodromy & Excited-State Quantum Phase Transitions in Integrable Systems Collective Vibrations of Nuclei Pavel Cejnar Institute of Particle & Nuclear Physics, Charles University, Prague cejnar@ipnp.troja.mff.cuni.cz NIL DESPERANDUM !
Monodromy(in classical & quantum mechanics): singularity in the phase space of a classical integrable system that prevents introduction of global analytic action-angle variables. Important consequences on the quantum level... Quantum phase transitions: abrupt changes of system’s ground-state properties with varying external parameters. The concept will be extended to excited states...
Part 1/4: Monodromy
Integrable systems Hamiltonian for f degrees of freedom: f integrals of motions “in involution” (compatible) Action-angle variables: The motions in phase space stick onto surfaces that are topologically equivalent to tori
Monodromy in classical and quantum mechanics Etymology:Μονοδρoμια= “once around” Invented: JJ Duistermaat, Commun. PureAppl. Math. 33, 687 (1980). Promoted: RH Cushman, L Bates: Global Aspects of Classical Integrable Systems (Birkhäuser, Basel, 1997). Simplest example:spherical pendulum z Hamiltonian constraints y ρ x Conserved angular momentum: 2 compatible integrals of motions, 2 degrees of freedom (integrable system)
Singular bundle of orbits: point of unstable equilibrium (trajectory needs infinite time to reach it) trajectories with E=1, Lz=0 “pinched torus” …corresponding lattice of quantum states:
It is impossible to introduce a global system of 2 quantum numbers defining a smooth grid of states: q.num.#1: z-component of ang.momentum m q.num.#2: ??? candidates: “principal.q.num.” n, “ang.momentum”l, combination n+m low-E high-E m m m “crystal defect” of the quantum lattice K Efstathiou et al., Phys. Rev. A 69, 032504 (2004).
Another example:Mexican hat (champagne bottle) potential MS Child, J. Phys. A 31, 657 (1998). V E=0 y Pinched torusof orbits: E=0, Lz=0 x radial q.num. n principal q.num. 2n+m Crystal defect of the quantum lattice
Part 2/4: Quantum phase transitions & nuclear collective motions
Ground-state quantum phase transition( T=0QPT ) The ground-state energyE0 may be a nonanalytic function of η(for ). For two typical QPT forms: 2nd order QPT 1st order QPT But the Ehrenfest classification is not always applicable...
Geometric collective model quadrupole tensor of collective coordinates (2 shape param’s, 3 Euler angles ) …corresponding tensor of momenta neglect higher-order terms neglect … B oblate For zero angular momentum: spherical prolate motion in principal coordinate frame A y β γ 2D system x
Interacting boson model(from now on) F Iachello, A Arima (1975) s-bosons (l=0) • “nucleon pairs with l = 0, 2” • “quanta of collective excitations” d-bosons (l=2) Dynamical algebra:U(6) …generators: …conserves: Subalgebras:U(5), O(6), O(5), O(3), SU(3),[O(6), SU(3)] Dynamical symmetries (extension of standard, invariant symmetries): U(5) O(6) SU(3) [O(6), SU(3)]
inherent structure: triangle(s) D Warner, Nature 420, 614 (2002). The simplest, one-component version of the model, IBM-1
IBM classical limit Method by: RL Hatch, S Levit, Phys. Rev. C 25, 614 (1982) Y Alhassid, N Whelan, Phys. Rev. C 43, 2637 (1991) ____________________________________________________________________________________ ● use of Glaubercoherent states ● classical Hamiltonian complex variables contain coordinates & momenta (12 real variables) ● boson number conservation (only in average) 10 real variables: (2 quadrupole deformation parameters, 3 Euler angles, 5 associated momenta) fixed ● classical limit: restricted phase-space domain ● angular momentum J=0 Euler angles irrelevant only 4D phase space 2 coordinates(x,y) or (β,γ) ● result: Similar to GCM but with position-dependent kinetic terms and higher-order potential terms
GCM Phase diagramfor axially symmetric quadrupole deformation ground-state = minimum of the potential IBM critical exponent 1st order Triple point 2nd order Order parameter for axisym. quadrup. deformation: β=0 spherical, β>0 prolate,β<oblate. I II III 1st order
Part 3/4: Monodromy for integrable collective vibrations
O(6)-U(5) transition (…from now on) “seniority” The O(6)-U(5) transitional system is integrable: the O(5) Casimir invariant remains an integral of motion all the way and seniority v is a good quantum number. Classical limit for J=0 : kinetic energy Tcl potential energy Vcl J=0 projected O(5) “angular momentum”
O(6)-U(5) transition spherical g.s. deformed g.s. O(6) U(5) 0 1 4/5
Poincaré surfaces of sections: Μονοδρoμια η=0.6 pinched torus
Available phase-space volume at given energy connected to the smooth component of quantum level density Volume of the “enveloping” torus: singular tangent E 0 E0 β
Classification of trajectories by the ratio of periods associated with oscillations in β and γ directions. For rational the trajectory is periodic: M Macek, P Cejnar, J Jolie, S Heinze, Phys. Rev. C 73, 014307 (2006).
R≈2 “bouncing-ball orbits” (like in spherical oscillator) Spectrum of orbits (obtained in a numerical simulation involving ≈ 50000 randomly selected trajectories) E η=0.6 At E=0 the motions change their character from O(6)- to U(5)-like type of trajectories E=0 R>3 “flower-like orbits” (Mexican-hat potential) M Macek, P Cejnar, J Jolie, S Heinze, Phys. Rev. C 73, 014307 (2006). R
Lattice of J=0 states O(6) transitional U(5) (N=40) energy Μονοδρoμια M Macek, P Cejnar, J Jolie, S Heinze, Phys. Rev. C 73, 014307 (2006). →seniority
Part 4/4: Excited-state quantum phase transitions for integrable vibrations
N=80 all levels with J=0 1st order 2nd order E O(6)-U(5) What about phase transitions for excited states (if any) ??? This problem (independently of the model) solved at most for the lowest states. Difficulty: in the classical limit excited states loose their individuality... η ground-state phase transition(2nd order)
J=0level dynamics across the O(6)-U(5) transition (all v’s) N=40 E=0 S Heinze, P Cejnar, J Jolie, M Macek, Phys. Rev. C 73, 014306 (2006).
Wave functions in an oscillator approximation: DJ Rowe, Phys. Rev. Lett. 93, 122502 (2004), Nucl. Phys. A 745, 47 (2004). Method applicable along O(6)-U(5)transition for N→∞ and states with rel.seniority v/N=0: x may be treated as a continuous variable (N→∞) H oscillator with x-dependent mass: O(6) quasi-dynamical symmetrybreaks down once the edge of semiclassical wave function reaches thend=0ornd=Nlimits. O(6) limit O(6)-U(5) nd i=1 i=2 N=60, v=0
we obtain: For v=0eigenstates of ground-state phase transition η=0.8 => approximation holds for energies below At E=0 all v=0 states undergo a nonanalytic change.
x-dependence of velocity–1 ( classical limit of |ψ(x)|2 ) Effect of m(x)→∞for x → –¼ Similar effect appears in the β-dependence of velocity–1 in the Mexican hat at E=0 1/β-divergence In the N→∞limit the average <nd>i→0 (and <β >i →0) as E→0. At E=0 all v=0 states undergo a nonanalytic change.
U(5) wave-function entropy i=1 i=10 N=80 |Ψ(nd )|2 i=20 i=30 v=0 ↓ Eup=0 S Heinze, P Cejnar, J Jolie, M Macek, PRC 73, 014306 (2006).
i=1 1 maximum 10 maxima i=10 |Ψ(nd )|2 i=20 20 maxima v=0 ↓ Eup=0 i=30 30 maxima S Heinze, P Cejnar, J Jolie, M Macek, PRC 73, 014306 (2006).
U(5) wave-function entropy i=1 i=10 quasi-O(6) quasi-U(5) N=80 |Ψ(nd )|2 i=20 i=30 v=0 ↓ Eup=0 S Heinze, P Cejnar, J Jolie, M Macek, PRC 73, 014306 (2006).
Any phase transitions for nonzero seniorities? constant & centrifugal terms For δ≠0 fully analytic evolution of the minimum β0 and min.energy Veff(β0) =>no phase transition !!!
J=0 level dynamics for separate seniorities N=80 excited states ground state v=0 continuous 2nd order (probably without Ehrenfest classif.) no phase transition v=18
Conclusions: • Quantum phase transitionsin integrablesystems: connection with monodromy • Testing example: γ-soft nuclear vibrations [O(6)-U(5) IBM] - relation to other systems with Mexican-hat potential (Ginzburg-Landau model) • Concrete results on quantum phase transitions for individual excited states: • Open questions: • Connection with thermodynamic description of quantum phase transitions? • Extension to nonintegrable systems: is there an analog of monodromy? • E=0 phase separatrix for zero-seniority states • analytic evolutions for nonzero-seniority states Collaborators:Michal Macek(Prague), Jan Dobeš(Řež), Stefan Heinze, Jan Jolie(Cologne). Thanks to:David Rowe(Toronto), Pavel Stránský (Prague)…