1 / 6

Sociology 601 Class 26: December 1, 2009 (partial)

Sociology 601 Class 26: December 1, 2009 (partial). Review curvilinear regression results cubic polynomial Interaction effects example: earnings on married and gender example: earnings on marital statuses and gender example: earnings on age and gender example: earnings on age and education

Download Presentation

Sociology 601 Class 26: December 1, 2009 (partial)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Sociology 601 Class 26: December 1, 2009(partial) • Review • curvilinear regression results • cubic polynomial • Interaction effects • example: earnings on married and gender • example: earnings on marital statuses and gender • example: earnings on age and gender • example: earnings on age and education • F-tests comparing models • Article example

  2. Review: Regression with Curvilinearity

  3. Example 1: Regression with Interaction, step 0 • Regress earnings on gender and married/not married • yi = β0 + β1gender + β2married + ei • both gender and married are dummy variables • easier calculations if all dummy variables are 0/1 • no interaction: assumes marriage has same association with (higher) earnings for both men and women • . regress conrinc gender mar1 • Source | SS df MS Number of obs = 1474 • -------------+------------------------------ F( 2, 1471) = 82.24 • Model | 8.5661e+10 2 4.2830e+10 Prob > F = 0.0000 • Residual | 7.6612e+11 1471 520817334 R-squared = 0.1006 • -------------+------------------------------ Adj R-squared = 0.0993 • Total | 8.5178e+11 1473 578263951 Root MSE = 22821 • ------------------------------------------------------------------------------ • conrinc | Coef. Std. Err. t P>|t| [95% Conf. Interval] • -------------+---------------------------------------------------------------- • gender | -13867.11 1191.798 -11.64 0.000 -16204.91 -11529.3 • mar1 | 5465.959 1192.441 4.58 0.000 3126.894 7805.025 • _cons | 37785.12 1073.949 35.18 0.000 35678.49 39891.75 • ------------------------------------------------------------------------------ • married people (m&f) earn $5466 more than non married • women (gender=1) earn $13,867 less than men

  4. Example 1: Regression with Interaction, step 1 • Separate regressions of earnings on married, by gender: • . regress conrinc mar1 if gender==0 /* men */ • Source | SS df MS Number of obs = 725 • -------------+------------------------------ F( 1, 723) = 31.29 • Model | 1.9321e+10 1 1.9321e+10 Prob > F = 0.0000 • Residual | 4.4645e+11 723 617501240 R-squared = 0.0415 • -------------+------------------------------ Adj R-squared = 0.0402 • Total | 4.6577e+11 724 643334846 Root MSE = 24850 • ------------------------------------------------------------------------------ • conrinc | Coef. Std. Err. t P>|t| [95% Conf. Interval] • -------------+---------------------------------------------------------------- • mar1 | 10383.4 1856.279 5.59 0.000 6739.057 14027.74 • _cons | 35065.27 1380.532 25.40 0.000 32354.94 37775.6 • ------------------------------------------------------------------------------ • . regress conrinc mar1 if gender==1 /* women */ • Source | SS df MS Number of obs = 749 • -------------+------------------------------ F( 1, 747) = 0.26 • Model | 106732224 1 106732224 Prob > F = 0.6129 • Residual | 3.1118e+11 747 416578779 R-squared = 0.0003 • -------------+------------------------------ Adj R-squared = -0.0010 • Total | 3.1129e+11 748 416164546 Root MSE = 20410 • ------------------------------------------------------------------------------ • conrinc | Coef. Std. Err. t P>|t| [95% Conf. Interval] • -------------+---------------------------------------------------------------- • mar1 | 755.3387 1492.253 0.51 0.613 -2174.17 3684.848 • _cons | 26201 1038.855 25.22 0.000 24161.57 28240.42 • ------------------------------------------------------------------------------ • looks like marriage is associated with higher earnings more for men (+$10,383, p<001) than for women (+$755, n.s.)

  5. Example 1: Regression with Interaction, step 2 • to test whether the male and female coefficients are significantly different, we must calculate an interaction model: • yi = β0 + β1genderi + β2marriedi + β3genderi*marriedi + ei • . gen byte margen=gender*mar1 • (1 missing value generated) • . regress conrinc gender mar1 margen • Source | SS df MS Number of obs = 1474 • -------------+------------------------------ F( 3, 1470) = 60.89 • Model | 9.4145e+10 3 3.1382e+10 Prob > F = 0.0000 • Residual | 7.5764e+11 1470 515399826 R-squared = 0.1105 • -------------+------------------------------ Adj R-squared = 0.1087 • Total | 8.5178e+11 1473 578263951 Root MSE = 22702 • ------------------------------------------------------------------------------ • conrinc | Coef. Std. Err. t P>|t| [95% Conf. Interval] • -------------+---------------------------------------------------------------- • gender | -8864.271 1710.548 -5.18 0.000 -12219.65 -5508.897 • mar1 | 10383.4 1695.885 6.12 0.000 7056.784 13710.01 • margen | -9628.059 2372.993 -4.06 0.000 -14282.87 -4973.246 • _cons | 35065.27 1261.245 27.80 0.000 32591.24 37539.3 • ------------------------------------------------------------------------------ • t(b3) = -4.06; p<001; so marriage has different associations with earnings for men and women

  6. Example 1: Regression with Interaction, step 2b • results for the interaction model: • yhat = $35,065- $8,864*gender + $10,383*married - $9,628 *genderi*married • Calculate average earnings for different types: • The marriage effect: • The marriage effect for men is 45448-35065 = 10383 = b2 • The marriage effect for women is 26956-26201 = 755 = b2 + b3 • The gender effect: • The gender effect for the not married is 26201-35065= -8864 = b1 • The gender effect for the married is 26956-45448 = -18492 = b1+b3 • b3 = the difference in the marriage effect between men & women • b3 = the difference in the gender effect between the married & unmarried

More Related