1 / 11

IP modeling techniques I

IP modeling techniques I. In this handout, Modeling techniques: Using binary variables Restrictions on number of options Contingent decisions Variables (functions) with k possible values Applications: Facility Location Problem Knapsack Problem. Example of IP: Facility Location.

ina
Download Presentation

IP modeling techniques I

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. IP modeling techniques I In this handout, Modeling techniques: Using binary variables Restrictions on number of options Contingent decisions Variables (functions) with k possible values Applications: Facility Location Problem Knapsack Problem

  2. Example of IP: Facility Location • A company is thinking about building new facilities in LA and SF. • Relevant data: Total capital available for investment: $10M • Question: Which facilities should be built to maximize the total profit?

  3. Example of IP: Facility Location • Define decision variables (i= 1, 2, 3, 4): • Then the total expected benefit: 9x1+5x2+6x3+4x4 the total capital needed: 6x1+3x2+5x3+2x4 • Summarizing, the IP model is: max9x1+5x2+6x3+4x4 s.t.6x1+3x2+5x3+2x4  10 x1, x2, x3, x4 binary ( i.e., xi{0,1} )

  4. Knapsack problem Any IP, which has only one constraint, is referred to as a knapsack problem . • n items to be packed in a knapsack. • The knapsack can hold up to W lb of items. • Each item has weight wilb and benefit bi . • Goal: Pack the knapsack such that the total benefit is maximized.

  5. IP model for Knapsack problem • Define decision variables (i= 1, …, n): • Then the total benefit: the total weight: • Summarizing, the IP model is: max s.t. xibinary (i= 1, …, n)

  6. Connection between the problems • Note: The version of the facility location problem is a special case of the knapsack problem. • Important modeling skill: • Suppose we know how to model Problems A1,…,Ap; • We need to solve Problem B; • Notice the similarities between Problems Ai and B; • Build a model for Problem B, using the model for Problem Ai as a prototype.

  7. The Facility Location Problem: adding new requirements • Extra requirement: build at most one of the two warehouses. The corresponding constraint is: x3 +x4  1 • Extra requirement: build at least one of the two factories. The corresponding constraint is: x1 +x2 ≥ 1

  8. Modeling Technique: Restrictions on the number of options • Suppose in a certain problem, n different options are considered. For i=1,…,n • Restrictions: At least p and at most q of the options can be chosen. • The corresponding constraints are:

  9. Modeling Technique: Contingent Decisions Back to the facility location problem. • Requirement: Can’t build a warehouse unless there is a factory in the city. The corresponding constraints are: x3  x1(LA)x4  x2(SF) • Requirement: Can’t select option 3 unless at least one of options 1 and 2 is selected. The constraint: x3 x1 + x2 • Requirement: Can’t select option 4 unless at least two of options 1, 2 and 3 are selected. The constraint: 2x4 x1 + x2 +x3

  10. Modeling Technique: Variables with k possible values • Suppose variable y should take one of the values d1, d2, …, dk . • How to achieve that in the model? • Introduce new decision variables. For i=1,…,k, • Then we need the following constraints.

  11. Modeling Technique: Functions with k possible values • The technique of the previous slide can be extended to functions. • Suppose the linear function f(y)=a1y1+…+anyn should take one of the values d1, d2, …, dk . • Introduce new decision variables. For i=1,…,k, • Then we need the following constraints.

More Related