1 / 20

Value of Life Analysis

Value of Life Analysis. Scott Matthews Courses: 12-706 / 73-359 / 19-702. Administrivia. PS 5 due today Project 2 - same rules as last time, etc. “Value of Life”. Economists don’t like to say they put a value on life

Download Presentation

Value of Life Analysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Value of Life Analysis Scott Matthews Courses: 12-706 / 73-359 / 19-702

  2. Administrivia • PS 5 due today • Project 2 - same rules as last time, etc. 12-706 and 73-359

  3. “Value of Life” • Economists don’t like to say they put a value on life • They say they “Study peoples’ willingness to pay to prevent premature mortality” • Translation: “how much is your life worth”? 12-706 and 73-359

  4. Economic valuations of life • Miller (n=29) $3 M in 1999 USD, surveyed • Wage risk premium method • WTP for safety measures • Behavioral decisions (e.g. seat belt use) • Foregone future earnings • Contingent valuation • Note that we are not finding value of a specific life, but instead of a statistical life 12-706 and 73-359

  5. DALY/QALY measures • Disability adjusted life years or quality-adjusted life years • These are measures used to normalize the quality-quantity tradeoff discussed last time. • E.g., product of life expectancy (in years) and the quality of life available in those years. 12-706 and 73-359

  6. Another CEA Example • Automated defribillators in community • http://www.early-defib.org/03_06_09.html • What would costs be? • What is effectiveness? 12-706 and 73-359

  7. Risk Analysis • Study of the interactions between decision making, judgment, and nature • Evidence : cost-effectiveness of risk reduction opportunities varied widely - orders of magnitude • Economic efficiency problems 12-706 and 73-359

  8. Example - MAIS scale • Abbreviated Injury Scale (AIS) is an anatomically based system that classifies individual injuries by body region on a six point ordinal scale of risk to life.   • AIS does not assess the combined effects of multiple injuries.  • The maximum AIS (MAIS) is the highest single AIS code for an occupant with multiple injuries.  12-706 and 73-359

  9. MAIS Table - Used for QALY Conversions 12-706 and 73-359

  10. Sample QALY comparison • A: 4 years in a health state of 0.5 • B: 2 years in a health state of 0.75 • QALYs: A=2 QALY; B=1.5 QALY • So A would be preferred to B. 12-706 and 73-359

  11. Cost-Effectiveness of Life-Saving Interventions • From “500 Life-saving Interventions and Their Cost-Effectiveness”, Risk Analysis, Vol. 15, No. 3, 1995. • ‘References’ (eg #1127) are all other studies • Model: • Estimate costs of intervention vs. a baseline • Discount all costs • Estimate lives and life-years saved • Discount life years saved • CE = CI-CB/EI-EB 12-706 and 73-359

  12. Specific (Sample) Example • From p.373 - Ref no. 1127 • Intervention: Rear outboard lap/shoulder belts in all (100%) of cars • Baseline: 95.8% of cars already in compliance • Intervention: require all cars made after 9/1/90 to have belts • Thus costs only apply to remaining 4.2% (65,900) cars • Target population: occupants over age 4 • Others would be in child safety seats • What would costs be? 12-706 and 73-359

  13. Example (cont) • 1986 Costs (from study): $6 cost per seat • Plus added fuel costs (due to increased weight) = total $791,000 over life of all cars produced • Effectiveness: expect 23 lives saved during 8.4 year lifetime of fleet of cars • But 95.8% already exist, thus only 0.966 lives saved • Or 0.115 lives per year (of use of car) • But these lives saved do not occur all in year 0 - they are spread out over 8.4 years. • Thus discount the effectiveness of lives saved per year into ‘year 0’ lives.. 12-706 and 73-359

  14. Cost per life saved • With a 5% discount rate, the ‘present value’ of 0.115 lives for 9 years = 0.817 (less than 0.966) • Discounted lives saved = • This is basically an annuity factor • So cost/life saved = $791,000/0.817 • Or $967,700 per life (in “$1986/1986 lives”) • Using CPI: 145.8/109.6 -> $1,287,326 in $1993 • But this tells us only the cost per life saved • We realistically care more about quality of life, which suggests using a quality index, e.g. life-years saved. 12-706 and 73-359

  15. Sample Life Expectancy Table 35-year old American expected to live 43.6 more years (newer data than our study) Source: National Center for Health Statistics, http://www.cdc.gov/nchs/fastats/lifexpec.htm 12-706 and 73-359

  16. Cost per life-year saved • Assume average age of fatality in car accident was 35 years • Life expectancy tables suggested a 35 year old person would on average live to age 77 • Thus ‘42’ life years saved per fatality avoided • 1 life-year for 42 yrs @5%= 17.42 years (ann. factor) • $1993 cost/life-year = $1,287,326/17.42 • With 2 sig. figures: ~$74,000 as in paper • Note $1,287,326 is already in cost/life units -> just need to further scale for life-years by 17.42 12-706 and 73-359

  17. Example 2 - Incremental CE • Intervention: center (middle) lap/shoulder belts • Baseline: outboard only - (done above) • Same target population, etc. • Cost: $96,771,000 • Incremental cost : $96,771,000 - $791,000 • Effectiveness: 3 lives/yr, 21.32 discounted • Incremental Effectiveness: 21.32 - 0.817= 20.51 • Cost/life saved = $95.98 million/20.51 = $4.7 million ($1986) => $6.22 million in $1993 • Cost/life-year = $6.22 million/17.42 = $360,000 12-706 and 73-359

  18. Overall Results in Paper • Some had < $0 cost, some cost > $10B • Median $42k per life year saved • Some policies implemented, some only studied • Variation of 11 orders of magnitude! • Some maximums - $20 billion for benzene emissions control at tire factories • $100 billion for chloroform standards at paper mills 12-706 and 73-359

  19. Comparisons 12-706 and 73-359

  20. Agency Comparisons • $1993 Costs per life year saved for agencies: • FAA (Aviation): $23,000 • CPSC (Consumer Products): $68,000 • NHTSA (Highways): $78,000 • OSHA (Worker Safety): $88,000 • EPA (Environment): $7,600,000! • Are there underlying causes for range? Hint: are we comparing apples and oranges? 12-706 and 73-359

More Related