460 likes | 668 Views
NANOFRICTION-- AN INTRODUCTION E. Tosatti SISSA/ICTP/Democritos TRIESTE. Contents 1. Friction. Generalities, history. 2. “Stick-slip” versus smooth sliding; friction mechanisms. 3. Nanofriction: experimental methods. AFM, QCM, SFA…
E N D
NANOFRICTION-- AN INTRODUCTION E. Tosatti SISSA/ICTP/Democritos TRIESTE
Contents 1. Friction. Generalities, history. 2. “Stick-slip” versus smooth sliding; friction mechanisms. 3. Nanofriction: experimental methods. AFM, QCM, SFA… 4. Nanofriction: theory . a). Linear response b). Nonlinear friction in simple models: Prandtl-Tomlinson, Frenkel-Kontorova c). Simulated nanofriction: Molecular Dynamics--applications
FRICTION NANOFRICTION FN FL (MEYER) (BRAUN) FRICTION COEFFICIENT: m = FL/ FN (usually~0.1-1) General Refs: B.N.J. PERSSON, Sliding Friction, Springer (2000); J.KRIM, Surf. Sci. 500, 741 (2002)
RELEVANCE -- FRICTION: energy conservation; machine wear; ... -- NANOFRICTION: basic understanding; nanotechnology.
HISTORY LEONARDO DA VINCI 1. Friction is independent of the geometrical contact area 2. Friction is proportional to normal load AMONTONS Guillaume Amontons (1663-1705)
COULOMB 3. Friction independent of velocity 4. Friction tied to roughness EULER 5. Static vs. dynamic friction
STATIC vs DYNAMIC FRICTION SLIDING VELOCITY Fs= Fd Fk= Fr APPLIED FORCE
WHY FRICTION IS INDEP. OF AREA, AND PROPORT. TO LOAD Philip Bowden 1903-1968 Real contact surface AR= FN/s << A DaVinci-Amonton's law explained: FL = t AR = t FN /s = m FN yield stress BOWDEN - TABOR, 1950s David Tabor 1913-2005
Rodrigues et al. (2000) Au NANOCONTACTS
MORE GENERAL SLIDING FRICTION MECHANISMS -- Entanglement of asperities, plastic deformation, wear (commonest macroscopic friction mechanism) -- Viscous friction (fluid interfaces, acquaplaning) -- Phonon dissipation, elastic deformation (flat solid interfaces) -- Bulk viscoelastic dissipation (e.g., car tyres) -- Electronic friction (metals, still being established) -- Vacuum friction (more speculative) -- .....
6. Stick-slip motion vs smooth sliding low velocity &/or soft system high velocity &/or stiff system
SOME EXPERIMENTAL NANOFRICTION METHODS
SOME EXPERIMENTAL TECHNIQUES MACRO-MESOSCOPIC NANO Tabor, Winterton, Israelachvili (~1975) Binnig, Quate, Gerber (1986)
FRICTION NANOFRICTION (MEYER) GERD BINNIG HEINI ROHRER
AFM INSTRUMENTS Measure FL , F N Typical F N1-100 nN (MEYER)
NaCl(100) (MEYER et al) -- “ATOMIC” STICK-SLIP MOTION OF TIP -- ENCLOSED AREA IN (F, x) PLANE EQUALS DISSIPATED FRICTIONAL ENERGY
QCM (QUARTZ CRYSTAL MICROBALANCE) a Slip timet: 2 t: = d (Q-1)/dw KRIM, WIDOM, PRB 38, 12184 (1986)
QCM Frequency n= 107 Hz Amplitude a = 100 Angstrom Velocity v ~ 2pna ~ 0.6m/s |Finertial|~ M (2pn)2 a = 3 x 10-15N ~3 x 10-6nN VERY WEAK FORCE --> LINEAR RESPONSE REGIME!
THEORY (a) LINEAR RESPONSE
ZERO EXTERNAL FORCE: 2D BROWNIAN DIFFUSION <r2> = 4 Dt y x
LINEAR RESPONSE THEORY < v > /m =F ---->> “viscous” friction m = mobility EINSTEIN RELATION m=D/ kBT D = S (w=0) S (w) = F.T. { <v(t) - v(0)>} VIVISCOUS FRICTION GOOD FOR FLUIDS, BUT NOT FOR SOLIDS: VIOLATES “OBEY” COULOMB’S LAW, F DEPENDENT ON VELOCITY
THEORY (b) SIMPLE (“MINIMALISTIC” ) FRICTION AND NANOFRICTION MODELS
PRANDTL-TOMLINSON MODEL (1928) v keff H= (E0/2)cos(2pxtip/a) + (keff/2)(xtip-x)2+damping
STIFF SOFT LARGE K SMALL E LARGE E SMALL K SMOOTH SLIDING STICK-SLIP SLIDING F~ log v “COULOMB”! F~ v SASAKI, KOBAYASHI, TSUKADA, PRB 54 ,2138 (1996)
FRENKEL-KONTOROVA MODEL (1938) K e O.M.BRAUN, YU.S.KIVSHAR, The Frenkel Kontorova Model: Concepts, Methods, Applications, Springer (2004)
THE AUBRY TRANSITION INCOMMENSURATE: a c / a b = IRRATIONAL Fstatic SLIDING K e PINNED e g = K / gc gg g >gc ZERO STATIC FRICTION g <gc FINITE STATIC FRICTION (“PINNING”)
PHONON GAP OF PINNED SLIDER w2 g > gc g < gc q q
THEORY (c) NANOFRICTION SIMULATIONS -- NEWTONIAN or LANGEVIN DYNAMICS -- FROM MODELS TO REALISTIC MOLECULAR DYNAMICS (MD) -- MD: EMPIRICAL AND AB INITIO FORCES -- VARIETY OF SYSTEMS, APPLICATIONS
MOLECULAR DYNAMICS SIMULATIONS NEWTON TOT (FREE) EN. LANGEVIN THERMAL NOISE + - gvi(t)+ hi(t)
EMPIRICAL INTERPARTICLE FORCES (EXAMPLE: LENNARD-JONES PAIR POTENTIAL)
SLAB GEOMETRY FREE SURFACE PBC PBC FREE SURFACE
EXAMPLE: “GRAZING” FRICTION SIMULATION Diamond V NaCl
Load = 1.0 nN T = 1100 K (6 Ang) Zykova-Timan, et al, Nature Materials6, 231 (2007)
EXAMPLE: “PLOWING” FRICTION WITH WEAR HIGH TEMPERATURE NANOFRICTION, DIAMOND ON NaCl(100) Zykova-Timan, Ceresoli, Tosatti, Nature Materials6, 231 (2007)
PLOWING FRICTION FORCES v = 50 m/s T=1100 K Normal force 6 Angstrom penetration
HIGH T FRICTIONAL DROP: SKATING “SKATING” TIP IN LOCAL LIQUID CLOUD FURROW CLOSES UP BEHIND TIP v = 50 m/s
SIMULATED LUBRICATION (BRAUN)
SQUEEZOUT TARTAGLINO, SIVEBAEK, PERSSON, TOSATTI, J. Chem Phys 125, 014704 (2006)
WHERE DOES THE ENERGY GO? WEAR + PHONONS IN SIMULATION, THE THERMOSTATING METHOD MAY INFLUENCE AND FALSIFY THE REAL PHONON FRICTION Temp.(K) t (fs)
SUMMARY FRICTION OFFERS MUCH MORE INTEREST AT NANOSCALE SIMPLE MODELS DEMONSTRATE STICK-SLIP, PINNING TRANSITION SIMULATIONS EXTREMELY USEFUL AND PREDICTIVE IN NANOFRICTION DISPOSAL OF DISSIPATED PHONON ENERGY NEEDS SPECIAL ATTENTION THE END
SOME REFERENCES General : B.N.J. PERSSON, Sliding Friction, Springer (2000); J.KRIM, Surf. Sci. 500, 741 (2002) Stic-slip in Prandtl- Tomlinson Model:SASAKI, KOBAYASHI, TSUKADA, PRB 54 ,2138 (1996) Frenkel-Kontorova Model: O.M.BRAUN, YU.S.KIVSHAR, The Frenkel Kontorova Model: Concepts, Methods, Applications, Springer (2004) Nanofriction Simulation: Zykova-Timan et al, Nat. Materials6, 231 (2007) Squeezout Simulation: TARTAGLINO, SIVEBAEK, PERSSON, TOSATTI, J. Chem Phys 125, 014704 (2006) Nanoscale Rolling Simulation: O.M. BRAUN, PRL (2006)