130 likes | 348 Views
An Algorithm for Removable Visible Watermarking. Source: Circuits and Systems for Video Technology, Vol 16, Issue 1, Jan. 2006, pp. 129 – 133 Authors: Yongjian Hu, Kwong S, and Jiwu Huang. Speakers: Hong-Hang Chang. Date: 12. 21. 2009. Outline. Introduction
E N D
An Algorithm for Removable Visible Watermarking Source: Circuits and Systems for Video Technology, Vol 16, Issue 1, Jan. 2006, pp. 129 – 133 Authors: Yongjian Hu, Kwong S, and Jiwu Huang. Speakers: Hong-Hang Chang. Date: 12. 21. 2009
Outline • Introduction • Related work • Proposed scheme • Experimental Result • Conclusion
Related work 130 475 240 210 110 410 100 25 20 110 -10 0 • DWT 120 235 431 200 115 393 5 -1 105 10 95 32 178 5 88 167 90 10 88 -2 15 -20 79 8 127 -75 253 126 -59 226 1 -3 125 24 101 -16 LL2 LL HL2 HL HL LL LL LH2 HH2 LH LH HH HH LL HL HH LH
Proposed scheme LLK HLK LHK HHK HL2 HL LL2 HL2 HL HL LLK LH2 HH2 LH2 HH2 Low-Frequency Suspend LH HH LH LH HH HH k = the current scale of the DWT. K = the final scale of the DWT. High-Frequency Suspend
Proposed scheme (Cont.) W 80 170 50 67 40 150 200 95 60 60 150 83 70 88 140 110 70 80 120 75 60 90 120 98 80 130 92 100 100 100 110 110 110 88 140 70 H 90 90 90 80 90 82 100 77 70 60 130 78 Suppose wh= 0.25 ww= 0.75 170*0.25 + 50*0.75= 80 150*0.25 + 40*0.75= 67 . . 90*0.25 + 90*0.75= 78 X
Proposed scheme (Cont.) • Low-Frequency Suspend 145 1 170 0 150 150 1 200 95 150 92 1 140 140 0 110 0 110 75 120 1 98 120 1 Case1: take the H(1,1) for example. X(i,j) = the mean of the coefficients corresponding ‘0’ from nearest 8 neighbors . X(1,1)= (150+140)/2 =145 130 130 1 100 100 0 110 0 110 140 140 0 1 0 90 0 90 1 82 90 100 0 100 1 130 78 0 0 1 1 Case2: take the H(1,4) for example. X(i,j) = the mean of all the unchanged coefficients. X(1,4)= (170+150+…+77+78) / 16 = 91.625≈92 1 1 HL X
Proposed scheme (Cont.) HL2 HL2 HL HL • Low-Frequency Suspend 50 1 170 50 170 1 40 150 40 150 200 60 200 0 60 0 150 150 LH2 LH2 HH2 HH2 70 140 1 70 140 110 110 70 0 120 60 120 0 90 120 120 1 90 1 130 80 130 80 100 100 0 100 110 110 110 0 140 140 0 70 W H LH LH HH HH 90 0 90 90 80 1 90 80 90 70 1 70 100 100 130 130 60 0 H W X
Proposed scheme (Cont.) 1 1 0 1 1 1 HL2 HL • High-Frequency Suspend 1 1 1 1 0 0 0 0 LH2 HH2 5 20 5 5 0 0 40 40 1 1 1 1 1 1 1 1 1 1 1 160 160 50 50 90 90 20 20 HLK 1 1 1 1 1 1 1 1 1 1 1 -5 -5 -10 3 -20 -20 -1 -1 Case1: take the H(1,2) for example. the mean of unchanged coefficients in its 8 neighbors. LHK HHK LH HH 4 4 -15 -15 -30 3 4 4 0 1 1 1 1 1 1 1 1 1 1 Case2: take the H(3,3) for example. the mean of unchanged coefficients in its 24 neighbors. Case3: take the H(4,4) for example. the mean of all unchanged coefficients .
Proposed scheme (Cont.) • High-Frequency Suspend 5 5 0 40 160 50 90 20 -5 3 -20 -1 4 -15 3 4
Proposed scheme (Cont.) • Retrieve 10 300 10 -2 7 -5 20 250 155 a A B b 129 c C 4 8 D d 5 260 -1 30 -5 10 280 15 145 e E 123 f F g G 6 H h 13 132 I i J j 145 15 K k l 5 L …… 128 M m n 135 N o 16 O p 10 P ……
Experiment result Fig. 1 PSNR (DB) OF RECOVERED IMAGES. LR AND ILR DENOTE LEGALLY AND ILLEGALLY RECOVERED IMAGES, RESPECTIVELY
Conclusion • The experimental results have demonstrated that the legally obtained image has very high visual quality.