1 / 28

A chaos-based robust wavelet-domain watermarking algorithm

A chaos-based robust wavelet-domain watermarking algorithm. Source: Chaos, Solitions and Fractals, Vol. 22, 2004, pp. 47-54. Authors: Zhao Dawei, Chen Guanrong, Liu Wenbo Speaker: Hao-Cheng Wang( 王皓正 ) Date: 2004/9/22. Outline. Introduction Watermarking in the wavelet domain

kylia
Download Presentation

A chaos-based robust wavelet-domain watermarking algorithm

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A chaos-based robust wavelet-domain watermarking algorithm Source: Chaos, Solitions and Fractals, Vol. 22, 2004, pp. 47-54. Authors: Zhao Dawei, Chen Guanrong, Liu Wenbo Speaker: Hao-Cheng Wang(王皓正) Date: 2004/9/22 NTIT

  2. Outline • Introduction • Watermarking in the wavelet domain • DWT (Discrete Wavelet Transformation) • Chaos and its application to watermarking • The new watermarking algorithm • Watermark embedding • Watermark detection • Results and analysis • Conclusions • Comment NTIT

  3. Watermarking in the wavelet domain • The digital watermarking technology includes • Spatial-domain • Transform-domain • DCT, DWT NTIT

  4. LL1 HL1 LH1 HH1 DWT (Discrete Wavelet Transformation)(1/2) • 低頻(low frequency):像素之間的變化小,影像較平滑,人眼的敏感度高. • LL1 • 高頻(high frequency):像素之間的差異大,影像較粗糙、模糊,人眼的敏感度較低. • HH1 • 中頻:介於低頻與高頻之間. • HL1、LH1 NTIT

  5. LL2 HL2 HL1 LL1 HL1 LH2 HH2 LH1 HH1 LH1 HH1 DWT (Discrete Wavelet Transformation)(2/2) NTIT

  6. Chaos and its application to watermarking • Logistic map • Where • When , the map is in the chaotic state. • Where NTIT

  7. Logistic map(1/3) • Example NTIT

  8. Logistic map(2/3) • Example NTIT

  9. Logistic map(3/3) • We will use the logistic map twice: • To generate a label sequence • To generate the watermark NTIT

  10. The new watermarking algorithm • Apply the wavelet transform locally DWT 8×8 block Isub (128×128) Iori (256×256) Watermark embedding 8×8 block IDWT I’sub (128×128) I’ori (256×256) NTIT

  11. 1 2 32 ……………….. ……………………………….. ……………………………….. ……………………………….. ……………………………….. 993 ……………………….. 1024 Watermark embedding(1/7) Original Image(256×256 pixels) NTIT

  12. 33, 1023, 112, 36, 77……………96, 1, 64…………………….983, 124, 33 33 1023 112 96 1 64 ……………………………… Label Sequence (Length=256) Watermark embedding(2/7) (1) (2) NTIT

  13. Watermark embedding(3/7) NTIT

  14. LL3 HL3 HL2 LH3 HH3 HL1 LH2 HH2 LH1 HH1 Watermark embedding(4/7) DWT NTIT

  15. Watermark embedding(5/7) Type 1 Type 2 [1, -1] 111110000110 01110010…… 11111-1-1-111 -111-1 NTIT

  16. , i=1, 2, …, N Cband are the original wavelet coefficients C’band are the watermarked wavelet coefficients αis a global parameter accounting for the watermark strength w is the watermark signal N is the element number of subband HL1 or HH1 or LH1 {HL1, HH1, LH1} Watermark embedding(6/7) (1) (2) (3) NTIT

  17. , i=1, 2, …, N Watermark embedding(7/7) NTIT

  18. Watermark detection(1/2) • The detection method we use is similar to the method proposed in [1] • We adopt the Neyman-Pearson criterion to determine the threshold Tp [1] Barni M, Bartolini F. Improved wavelet-bsed watermarking through pixel-wise masking. IEEE Trans Image Processing 2001;10(5):789-91. NTIT

  19. Watermark detection(2/2) (1) if ρ>T ρ: a watermark signal exists; otherwise, a watermark signal does not exist (2) see [1] for more details NTIT

  20. Results and analysis(1/3) • Test images: “Lena” and “Barbara”(256×256 pixels) • α=6.0, iseq=0.1564 and iwm=0.4123 NTIT

  21. Results and analysis(2/3) PSNR=39.30 NTIT

  22. Results and analysis(3/3) • When we set α=1.0, or smaller, we cannot detect the watermark correctly NTIT

  23. Robustness against various attacks • α=6, Pf=10-8, iseq=0.1564, iwm=0.4123 • Additive noise attacks • Gaussian noise • Salt and pepper noise • JPEG compression • Geometric manipulations • Cropping, resizing, rotation NTIT

  24. Cropping NTIT

  25. Resizing and rotation • Resizing • Zoom scale m • Zoom in (m>1) • Zoom out (m<1) • m >0.625 • Rotation • 25° NTIT

  26. Conclusions • This scheme applies the wavelet transform locally, based on the chaotic logistic map, and embeds the watermark into the DWT domain. • Introduced a blind watermarking detection technique using the Neyman-Pearson criterion. • Highly robust against geometric attacks and signal processing operations and JPEG compression. NTIT

  27. LL3 HL3 HL2 LH3 HH3 HL1 LH2 HH2 LH1 HH1 Comment(1/2) • 結合圖片的浮水印技術 c1 c1 mod 2 = 1 or 0 ? c1 ±1 111110000110 01110010…… NTIT

  28. Comment(2/2) p1 p1 mod 2 = 1 or 0 ? p1 ±1 NTIT

More Related