440 likes | 561 Views
Neutrino Masses from LSS Neutrino Masses from the CMB (III) The Dark Energy Survey. Ofer Lahav University College London. Concordance Cosmology. SN Ia CMB LSS – Baryonic Oscillations Cluster counts Weak Lensing Integrated Sachs Wolfe Physical effects: * Geometry
E N D
Neutrino Masses from LSS Neutrino Masses from the CMB (III) The Dark Energy Survey Ofer Lahav University College London
Concordance Cosmology • SN Ia • CMB • LSS – Baryonic Oscillations • Cluster counts • Weak Lensing • Integrated Sachs Wolfe Physical effects: * Geometry * Growth of Structure
Massive Neutrinos and Cosmology * Why bother? – absolute mass, effect on other parameters * Brief history of ‘Hot Dark Matter’ * Limits on the total Neutrino mass from cosmology within CDM M < 1 eV * Mixed Dark Matter? * Non-linear power spectrum and biasing – halo model * Combined cosmological observations and laboratory experiments
Brief History of ‘Hot Dark Matter’ • *1970s : Top-down scenario with massive neutrinos (HDM) – • Zeldovich Pancakes • *1980s: HDM - Problems with structure formation • *1990s: Mixed CDM (80%) + HDM (20% ) • * 2000s: Baryons (4%) + CDM (26%) +Lambda (70%): • But now we know HDM exists! • How much?
Globalisation and the New Cosmology • How is the New Cosmology affected by Globalisation? • Recall the Cold War era: Hot Dark Matter/top-down (East) vs. Cold Dark Matter/bottom-up (West) • Is the agreement on the `concordance model’ a product of Globalisation? OL, astro-ph/0610713
Neutrinos decoupled when they were still relativistic, hence they wiped out structure on small scales k > knr = 0.026 (m /1 eV)1/2m1/2 h/Mpc Colombi, Dodelson, & Widrow 1995 CDM CDM+HDM WDM Massive neutrinos mimic a smaller source term
Neutrino properties Thenumber of neutrino species Nn affects the expansion rate of the universe, hence BBN. BBN constraints Nn between 1.7 and 3 (95% CL) (e.g. Barger et al. 2003). From CMB+LSS+SN Ia, N =4.2+1.2-1.7(95% CL) (Hannestad 2005) We shall assume Nn =3 Electron, muon and tau neutrinos Eigen states m1, m2, m3 112 neutrinos per cm3 Wnh2 = Mn/(94 eV)
Absolute Masses of Neutrinos Based on measured squared mass differences from solar and atmospheric oscillations Assuming m1 <m2 <m3 E & L, NJP 05
What could cosmic probes tell us about Neutrinos and Dark Energy?
The Growth factor: degeneracy of Neutrinos Mass and Dark Energy Kiakotou, Elgaroy, OL
DP(k)/P(k) = -8 Wn /Wm Not valid on useful scales! Kiakotou, Elgaroy, OL 2007, astro-ph 0709.0253
Weighing Neutrinos with 2dFGRS • Free streaming effect: • Wn/Wm< 0.13 Total n mass M< 1.8 eV • 0.001 < Wn < 0.04 (Oscillations) (2dF) • a Four-Component Universe ? Wn= 0.05 0.01 0.00 Elgaroy , Lahav & 2dFGRS team, astro-ph/0204152 , PRL
What do we mean by ‘systematic uncertainties’? • Cosmological (parameters and priors) • Astrophysical (e.g. Galaxy biasing) • Instrumental (e.g. ‘seeing’)
Degeneracy of neutrino mass n= 0.9 n=1.0 Prior 0< Wm<0.5 n= 1.1
Biasing vs. neutrino mass Pg(k) = b2(k) Pm(k) b(k) = a log(k) + c a ---- SAM for L>0.75 L* Total neutrino mass Elgaroy & Lahav , JCAP, astro-ph/030389
Weak Lensing is promising M Abazajian & Dodelson (2003) also Hannestad et al. 2006
Non-linear P(k) with massive neutrinos Abazajian et al. (astro-ph/0411552) modeled the effects of neutrino infall into CDM halos and incorporated it in the halo model. The effect is small: P(k)/P(k) » 1% at k » 0.5 h/Mpc for M» 1 eV Future work : high-resolution simulations with CDM, baryons and neutrinos
CMB with massive M =0.3, 0.9, 1.5, 6.0 eV Fixed cdm = 0.26 E&L 2004
Neutrinos masses and the CMB If znr > zrec h2 > 0.017 (i.e. M > 1.6 eV) Then neutrinos behave like matter - this defines a critical value in CMB features * Ichikawa et al. (2004 ) from WMAP1 alone M < 2.0 eV * Fukugita et al. (2006) from WMAP3 alone M < 2.0 eV
Normalization vs neutrino mass using WMAP alone + concordance model
Is CMB polarisation useful for neutrino mass? Fukugita, Ichikawa, Kawasaki, OL, astro-ph/0605362 Not directly, but reduces degeneracy with the reionization optical depth
Deriving Neutrino mass from Cosmology All upper limits 95% CL, but different assumed priors !
Forecasting Neutrino mass from Cosmology Note different error definitions and assumed priors !
Combined Cosmology & Terrestrial Experiments Fogli et al. Hep-ph/0408045
Combining KATRIN+CMB (Host, OL, Abdalla & Eitel 2007) =>> Ole’s talk
Neutrinos - Summary * Redshift surveys (+ CMB) Mn < 0.7-1.8 eV Ly- (+ CMB+LSS) Mn < 0.17 eV * Within the L-CDM scenarios, subject to priors. * Alternatives: MDM ruled out. * Future: errors down to 0.05 eV using SDSS+Planck, and weak gravitational lensing of background galaxies and of the CMB. Resolve the neutrino absolute mass!
Survey Filters Depth Dates Status Sq. Degrees CTIO 75 1 shallow published VIRMOS 9 1 moderate published COSMOS 2 (space) 1 moderate complete 36 4 deep complete DLS (NOAO) Subaru 30? 1? deep observing 2005? 170 5 moderate observing CFH Legacy 2004-2008 830 3 shallow approved RCS2 (CFH) 2005-2007 VST/KIDS/ VISTA/VIKING 1700 4+5 moderate 2007-2010? 50%approved 5000 4 moderate proposed DES (NOAO) 2008-2012? Pan-STARRS ~10,000? 5? moderate ~funded 2006-2012? LSST 15,000? 5? deep proposed 2014-2024? 1000+ (space) 9 deep proposed JDEM/SNAP 2013-2018? Imaging Surveys proposed moderate 5000? 4+5 2010-2015? VST/VISTA proposed moderate 2+1? DUNE 20000? (space) 2012-2018? Y. Y. Mellier
DUNE: Dark UNiverse Explorer • Mission baseline: • 1.2m telescope • FOV 0.5 deg2 • PSF FWHM 0.23’’ • Pixels 0.11’’ • GEO (or HEO) orbit • Surveys (3-year initial programme): • WL survey: 20,000 deg2 in 1 red broad band, 35 galaxies/amin2 with median z ~ 1, ground based complement for photo-z’s • Near-IR survey (J,H). Deeper than possible from ground. Secures z > 1 photo-z’s • SNe survey: 2x60 deg2, observed for 9 months each every 4 days in 6 bands, 10000 SNe out to z ~ 1.5, ground based spectroscopy
Photometric redshift • Probe strong spectral features (4000 break) • Difference in flux through filters as the galaxy is redshifted.
*Training on ~13,000 2SLAQ*Generating with ANNz Photo-z for ~1,000,000 LRGsMegaZ-LRG z = 0.046 Collister, Lahav, Blake et al., astro-ph/0607630
Baryon oscillations Blake, Collister, Bridle & Lahav; astro-ph/0605303
The Dark Energy Survey Blanco 4-meter at CTIO • Study Dark Energy using 4 complementary techniques: I. Cluster Counts II. Weak Lensing III. Baryon Acoustic Oscillations IV. Supernovae • Two multi-band surveys 5000 deg2g, r, i, z 40 deg2 repeat (SNe) • Build new 3 deg2 camera and data management system Survey 2010-2015 (525 nights) Response to NOAO AO 300,000,000 photometric redshifts
The DES Collaboration Fermilab: J. Annis, H. T. Diehl, S. Dodelson, J. Estrada, B. Flaugher, J. Frieman, S. Kent, H. Lin, P. Limon, K. W. Merritt, J. Peoples, V. Scarpine, A. Stebbins, C. Stoughton, D. Tucker, W. Wester University of Illinois at Urbana-Champaign: C. Beldica, R. Brunner, I. Karliner, J. Mohr, R. Plante, P. Ricker, M. Selen, J. Thaler University of Chicago:J. Carlstrom, S. Dodelson, J. Frieman, M. Gladders, W. Hu, S. Kent, R. Kessler, E. Sheldon, R. Wechsler Lawrence Berkeley National Lab: N. Roe, C. Bebek, M. Levi, S. Perlmutter University of Michigan: R. Bernstein, B. Bigelow, M. Campbell, D. Gerdes, A. Evrard, W. Lorenzon, T. McKay, M. Schubnell, G. Tarle, M. Tecchio NOAO/CTIO: T. Abbott, C. Miller, C. Smith, N. Suntzeff, A. Walker CSIC/Institut d'Estudis Espacials de Catalunya (Barcelona):F. Castander, P. Fosalba, E. Gaztañaga, J. Miralda-Escude Institut de Fisica d'Altes Energies (Barcelona):E. Fernández, M. Martínez CIEMAT (Madrid): C. Mana, M. Molla, E. Sanchez, J. Garcia-Bellido University College London: O. Lahav, D. Brooks, P. Doel, M. Barlow, S. Bridle, S. Viti, J. Weller University of Cambridge:G. Efstathiou, R. McMahon, W. Sutherland University of Edinburgh:J. Peacock University of Portsmouth: R. Crittenden, R. Nichol, R. Maartnes, W. Percival University of Sussex: A. Liddle, K. Romer plus postdocs and students
The Dark Energy Survey UK Consortium (I) PPARC funding: O. Lahav (PI), P. Doel, M. Barlow, S. Bridle, S. Viti, J. Weller (UCL), R. Nichol (Portsmouth), G. Efstathiou, R. McMahon, W. Sutherland (Cambridge) J. Peacock (Edinburgh) Submitted a proposal to PPARC requesting £ 1.7M for the DES optical design. In March 2006, PPARC Council announced that it “will seek participation in DES”. PPARC already approved £220K for current R&D. (II) SRIF3 funding: R. Nichol, R. Crittenden, R. Maartens, W. Percival (ICG Portsmouth) K. Romer, A. Liddle (Sussex) Funding the optical glass blanks for the UCL DES optical work These scientists will work together through the UK DES Consortium. Other DES proposals are under consideration by US and Spanish funding agencies.
DES Forecasts: Power of Multiple Techniques w(z) =w0+wa(1–a) 68% CL Assumptions: Clusters: 8=0.75, zmax=1.5, WL mass calibration BAO:lmax=300 WL:lmax=1000 (no bispectrum) Statistical+photo-z systematic errors only Spatial curvature, galaxy bias marginalized, Planck CMB prior Factor 4.6 improvement over Stage II DETF Figure of Merit: inverse area of ellipse
DES z=0.8 photo-z shell Mn 0.0 eV 0.4 0.9 1.7 Back of the envelope: improved by sqrt (volume) => Sub-eV from DES (OL, Abdalla, Black; in prep)
DES and a Dark Energy Programme • * 4-5 complementary probes • * Survey strategy delivers substantial DE science after 2 years • * Relatively modest (~ $20-30M), low-risk, near-term project with high discovery potential • *Synergy with SPT and VISTA on the DETF Stage III timescale • * Scientific and technical precursor to the more ambitious Stage IV Dark Energy projects to follow: LSST and JDEM
Some Outstanding Questions: * Vacuum energy (cosmological constant, w= -1.000 after all ?) * Dynamical scalar field ? * Modified gravity ? * Why /m = 3 ? * Non-zero Neutrino mass < 1eV ? * The exact value of the spectral index: n < 1 ? * Excess power on large scales ? * Is the curvature zero exactly ?