290 likes | 430 Views
On the efficient numerical simulation of kinetic theory models of complex fluids and flows. Francisco (Paco) Chinesta & Amine Ammar. LMSP UMR CNRS – ENSAM PARIS, France. Laboratoire de Rhéologie GRENOBLE, France. francisco.chinesta@paris.ensam.fr. In collaboration with:
E N D
On the efficient numerical simulation of kinetic theory models of complex fluids and flows Francisco (Paco) Chinesta & Amine Ammar LMSP UMR CNRS – ENSAM PARIS, France Laboratoire de Rhéologie GRENOBLE, France francisco.chinesta@paris.ensam.fr In collaboration with: R. Keunings Polymer solutions and melts M. Laso LCP M. Mackley & A. Ma Suspensions of CNT
q1 q2 r1 r2 rN+1 qN Molecular dynamics R Brownian dynamics The different scales: Kinetic theory: Fokker-Planck Eq. Deterministic, Stochastic & BCF solvers Constitutive Eq.
Solving the deterministic Fokker-Planck equation New efficient solvers for: • Reducing the simulation time of grid discretizations. • Computing multidimensional solutions where grid methods don’t run.
I. Reducing the simulation time The idea … Model: PDE Model: PDE + Karhunen-Loève decomposition
1. FENE Model 1D 300.000FEM dof ~10dof 3D ~10 functions (1D, 2D or 3D)
2. Non-Linear Models: Doi LCP With only 6 d.o.f. !! Larson & Ottinger (Macromolecules, 1991)
q1 q2 r1 r2 rN+1 qN II. Computing multidimensional solutions • It is time for dreaming! For N springs, the model is defined in a 3N+3+1 dimensional space !! ~ 10 approximation functions are enough
BUT How defining those high-dimensional functions ? Natural answer: with a nodal description 10 nodes = 10 function values 1D
q1 q2 r1 r2 rN+1 1080 ~ presumed number ofelementary particles in the universe !! qN 1D 10 dof 10x10 dof 2D 1080 dof 80D >1000D No function can be defined in a such space from a computational point of view !! F.E.M.
Computing multidimensional solutions The idea … Model: PDE FEM GRID
Solution EF q2 q1 F G q2 q1 1. MBS-FENE q2 q1
Solution EF q2 q1 F G q2 q1
Solution EF q2 q1 F G q2 q1
Solution EF q2 q1 F G q2 q1
Solution EF q2 q1 F G q2 q1
Solution EF q2 q1 F G q2 q1
Solution EF q2 q1 F G q2 q1
Solution EF q2 q1 F G q2 q1
Solution EF q2 q1 F G q2 q1
Solution EF q2 q1 F G q2 q1
Solution EF q2 q1 F G q2 q1
1D/9D q1 q2 q9 809 ~ 1016 FEM dof 80x9 RM dof 1040 FEM dof 100.000 RM dof 2D/10D
2. Complex Flows Example: Flow involving short fiber suspensions Kinematics: FEM-DVESS
3. Entangled polymer models based on reptation motion s = 0 s = 1 Doi-Edwards Model Ottinger Model: double reptation, CCR, chain stretching, …
Ongoing works : (I) Stochastic models can be also reduced ! y=1
Reduced Brownian Configurations Fields Discretization 4x4 1000x1000 • Solve i=1 and computed the reduced approximation basis • Solve for all i>1 the reduced problem:
Ongoing works: (II) Suspensions of CNT: Aggregation/Orientation model Enhanced modeling: + The associated Fokker-Planck equation
Perspectives • Enhanced kinetic model for CNT suspensions taking into account orientation and aggregation effects: FP & BD simulations. Collaboration with M. Mackley • Reduction of Stochastic, Brownian and molecular dynamics simulations. • Fast micro-macro simulations of complex flows: Lattice-Boltzmann & Reduced-FP; and many others mathematical topics (stabilization, wavelet bases, mixed formulations, enhanced particles methods, …). Collaboration with T. Phillips.