1 / 53

Stefan Kooths Université de Münster Modélisation macroéconomique avec MAKROMAT

Stefan Kooths Université de Münster Modélisation macroéconomique avec MAKROMAT www.kooths.de/assas. Sommaire. Introduction au logiciel MAKROMAT Étude de cas: Autofinancement de l‘ Eurofighter? [ ... ] La politique budgétaire/monétaire et les marchés financiers du modèle IS-LM-EE [ ... ]

iren
Download Presentation

Stefan Kooths Université de Münster Modélisation macroéconomique avec MAKROMAT

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Stefan KoothsUniversité de Münster Modélisation macroéconomique avec MAKROMAT www.kooths.de/assas KOOTHS: Modélisation macroéconomique avec MAKROMAT

  2. Sommaire • Introduction au logiciel MAKROMAT • Étude de cas:Autofinancement de l‘ Eurofighter? [...] • La politique budgétaire/monétaire et les marchés financiers du modèle IS-LM-EE [...] • La politique budgétaire/monétaire et l‘équilibre à prix flexibles: la courbe Phillips et le rôle des anticipations [...] KOOTHS: Modélisation macroéconomique avec MAKROMAT

  3. Première partie Introduction au logiciel MAKROMAT KOOTHS: Modélisation macroéconomique avec MAKROMAT

  4. MAKROMAT: conception principale • CAL (Computer Assisted Learning) • outil pour réaliser des simulations numériques sur la base d‘une maquette macroéconomique • démarche explorateure: expérimenter pour apprendre le fonctionnement des modèles macro • variations de paramètres (analyses de sensibilité) • analyses de chocs macroéconomiques • simulations de mesures de stabilisation • décharge l‘utilisateur de calculations ennuyeuses et de la réalisation de graphiques et de tables (mais: pas de la réflexion!) KOOTHS: Modélisation macroéconomique avec MAKROMAT

  5. MAKROMAT: principes de modélisation • à l‘arrière-plan: modèle OA-DA dynamique (synthèse néo/nouveau-classique) • OA: courbe de Phillips augmentée • DA: modèle Mundell-Fleming (IS-LM-EE) • point de départ: charpente bien structurée d‘un modèle keynésien vide • aucune activité économique (demande = 0) • principe de multiplicateur (adaption de la production à la demande) déjà incorporé • seule variable endogène: revenu national • tous les autres méchanismes du modèle OA-DA déactivés par défaut [...] KOOTHS: Modélisation macroéconomique avec MAKROMAT

  6. MAKROMAT: principes de modélisation (suite) • deux pas de modélisation: • choix de variables endogènes(type de modèle: multiplicateur simple, IS-LM, IS-LM-EE, ...) • entrée des valeurs de paramètre(forme concrète du modèle: liens entre les variables) • en selectionnant les variables endogènes et en modifiant les valeurs de paramètre initiales on active la tranche respective du modèle OA-DA • les effets économiques représentés par des options/paramètres inchangés restent inactifs • ainsi la complexité de la maquette est entièrement contrôlee par l‘utilisateur (principe WYGIWYK = What You Get Is What You Know) [...] KOOTHS: Modélisation macroéconomique avec MAKROMAT

  7. obligatoire optionel MAKROMAT: variables endogènes disponibles • Y : revenu national (par défaut) • i : taux d‘intérêt • e : taux de change (en changes flexibles) • M : masse monétaire (en changes fixes) • P : niveau de prix (OA-DA statique)gP : taux d‘inflation (OA-DA dynamique) • w : taux de salairegw : taux d‘accroissement des salaires KOOTHS: Modélisation macroéconomique avec MAKROMAT

  8. Modèle OA-DA dynamique: ébauche des liens importants KOOTHS: Modélisation macroéconomique avec MAKROMAT

  9. MAKROMAT: modélisation du temps • modèle en temps discret • intervalle de temps standard: t=0,1,2,...,100pour des maquettes extrêmement visqueux ou très cycliques l‘intervalle peut être élargi (maximum: 5000 periodes) • formes d‘analyses: la statique, la statique comparative et la dynamique • situation de départ: t=0 (équilibre) • chocs et voies de passage: t=1,2,3,... • situation d‘arrivée (t=100)à condition que la maquette soit stable et que le processus d‘adaptation se déroule suffisamment vite KOOTHS: Modélisation macroéconomique avec MAKROMAT

  10. MAKROMAT: exemple d‘une simple simulation (effet Haavelmo) • fonction de consommationC = 200 + 0,8.YV • fonction d‘investissementI = 600 • dépenses publiques (biens et services)G = 1000 • dépenses de transfer (prestations sociales)Tr = 300 • prélèvements obligatoiresT = 50 + 0,25.Y Politique budgétaire: Comment peut-on augmenter la production de 10 % sans déficit budgétaire? KOOTHS: Modélisation macroéconomique avec MAKROMAT

  11. Démarrer MAKROMAT KOOTHS: Modélisation macroéconomique avec MAKROMAT

  12. Deuxième partie Étude de cas:Autofinancement de l‘Eurofighter? KOOTHS: Modélisation macroéconomique avec MAKROMAT

  13. Eurofighter: une étude de l‘institut ifo à Munich „Les coûts d‘un abandon de l‘Eurofighters‘élèvent à plusieurs milliards“ Frankfurter Allgemeine Zeitung, 21 mai 1992, p. 11 KOOTHS: Modélisation macroéconomique avec MAKROMAT

  14. Eurofighter: principaux faits et résultats de l‘étude ifo • prix brut: 98 millions par avion • prix net: 29 millions par avion(ratio de récupération: 70,7 %) • „Une commande publique au secteur de l‘armement allemand de 100 millions induit une augmentation de la production globale de 273 millions.“ • „Pour le contribuable allemend chaque importation d‘un avion chasse étranger coûte deux fois le prix effectif d‘une production nationale.“ KOOTHS: Modélisation macroéconomique avec MAKROMAT

  15. Eurofighter: analyse d‘écarts avec MAKROMAT • les niveaux des grandeurs macroéconomiques allemandes n‘intéressent pas mais seulement leurs variations par suite du projet „Eurofighter“ • interprétation des résultats de MAKROMAT: écarts entre la situation avant (t=0) et après l‘achat d‘avions (t=1,2,3,...) KOOTHS: Modélisation macroéconomique avec MAKROMAT

  16. Eurofighter: suivre le raisonnement de l‘étude ifo • Quel multiplicateur est à la base de cette étude? • Quel est le taux d‘imposition marginal qui s‘ensuit du multiplicateur et du ratio de récupération? • Étant donné le taux d‘imposition marginal, quelle propension marginale à consommer produit le niveau du multiplicateur diagnostiqué? • Simulez l‘étude ifo avec MAKROMAT (achat d‘un avion par periode). Est-ce que la réalisation de l‘effet de récupération (= réduction du prix effectif) dépend de la durabilité de ce projet? KOOTHS: Modélisation macroéconomique avec MAKROMAT

  17. Eurofighter: suivre le raisonnement de l‘étude ifo (suite) • Considerez le cas d‘un achat à l‘étranger. Quelle part de production nationale (= allemande) dans la valeur ajoutée d‘un avion étranger est implicitement supposée par ifo attendu que l‘importation d‘un avion coûte [seulement, tout de même!] deux fois le prix effectif de l‘Eurofighter? Supposez que les prix bruts des avions ne diffèrent pas. KOOTHS: Modélisation macroéconomique avec MAKROMAT

  18. Eurofighter: faire la critique de l‘étude ifo • La considération d‘une part de proportion nationale importante dans le cas d‘un achat à l‘étranger et la négligence des effets correspondants dans le cas d‘une commande aux entreprises du pays ne sont pas consistantes (notamment pour un pays tellement intégré que l‘Allemagne). • L‘ effet de récupération ne se limite pas aux projets militaires. Toutes sortes de dépenses publiques pourraient réclamer de tels effets. Étant donné le niveau de dépenses publiques l‘effet de récupération ne favorise pas l‘augmentation des dépenses militaires. KOOTHS: Modélisation macroéconomique avec MAKROMAT

  19. Eurofighter: faire la critique de l‘étude ifo (suite) • Le „prix net“ du point de vue du contribuable allemand est égal au prix brut (les 98 million par avion doivent être payés). L‘étude confond les charges fiscales (soit à présent soit à l‘avenir) et l‘impact sur le déficit budgétaire. • Un simple modèle keynésien n‘est pas suffisamment convenable à expliquer les effets macroéconomiques du projet Eurofighter, d‘autant plus que la condition centrale (adaption de la production à la demande à prix fixes) n‘est pas satisfaite en Allemange au début des années 1990 (boom de la réunification). KOOTHS: Modélisation macroéconomique avec MAKROMAT

  20. Troisième partie La politique budgétaire/monétaire et les marchés financiers du modèle IS-LM-EE KOOTHS: Modélisation macroéconomique avec MAKROMAT

  21. Les marchés financiers du modèle IS-LM-EE • marché des capitaux (IS) • marché de la monnaie (LM) • en économie ouverte:marché des changes (EE) • implicitement (le nième marché):marché des titres (LF) KOOTHS: Modélisation macroéconomique avec MAKROMAT

  22. L‘importance du marché des titres • marché des titres: le marché où se produit la formation du taux d‘intérêt (adéquation entre l‘offre de titres et la demande de titres) • statique ou statique comparative: le nième marchè du modèle IS-LM peut être omis (loi de Walras) • les équilibres simultanés sur les marchés des biens/capitaux (IS) et de la monaie (LM) garantissent l‘équilibre sur le marché des titres • dynamique: le nième marché ne peut pas être omis (loi de Walras!) • pour la formation du taux d‘intérêt durant le processus d‘adaptation (déséquilibres!) le marché des titres doit être modélisé KOOTHS: Modélisation macroéconomique avec MAKROMAT

  23. Loi de Walras et déséquilibres IS-LM (exemples) • demande de capitaux excédentaire (I > S) • demande de monnaie excédentaire (L > M) • offre de titres excédentaire (WN << WA) • demande de capitaux excédentaire ( I > S) • marché de la monnaie équilibré (L = M) • offre de titre excédentaire (WN < WA) • demande de capitaux excédentaire (I > S) • offre de monnaie excédentaire (L < M) • marché des titres? (WN > = < WA)    KOOTHS: Modélisation macroéconomique avec MAKROMAT

  24. Les liens entre les différents marchés financiers (1) • acteurs sur le marché des capitaux • offre: secteurs réels disposant d‘un solde financier excédent (S, BS)ménages, État (surplus budgétaire), étranger (déficit du commerce extérieur) • demande: secteurs réels dont les dépenses surmontent leurs ressources (I, AB)entreprises, État (déficit budgétaire), étranger (excédent commercial) • des flux de capitaux impliquent des transactions contraires sur le marché des titrestitres = papiers homogènes (pas de différentiation selon la durée, la forme juridique etc.) • S + BS = WNR • I + AB = WAR KOOTHS: Modélisation macroéconomique avec MAKROMAT

  25. Les liens entre les différents marchés financiers (2) • acteurs sur le marché de la monnaie- pas à confondre avec le marché interbancaire- nom plus convenable pour ce marché: marché des crédits • demande: les secteurs réels (L = LS + LT)ménages, entreprises, État, étranger • offre: les banques (M)banque centrale + banques commerciales • des transactions bancaires impliquent des transactions contraires sur le marché des titresici encore: titres = papiers homogènes (pas de différentiation selon la durée, la forme juridique etc.) • L = WAL • M = WNM KOOTHS: Modélisation macroéconomique avec MAKROMAT

  26. marchédes titres Les composantes du marché des titres demande de titres (WN) offre de titres (WA) offre de capitaux(KA = S + BS) demande de capitaux(KN = I + AB) offre de monnaie(M) demande de monnaie(L) formation du taux d‘intérêt (i):S + BS + M = I + AB + L WNR + WNF = WAR + WAF première version KOOTHS: Modélisation macroéconomique avec MAKROMAT

  27. Le marché des titres et la courbe LF • la courbe LF („loanable funds“) comprend tous les couples (Y;i) qui assurent un équilibre sur le marché des titres • point d‘intersection commun avec la courbe IS et la courbe LM (Loi de Walras) • pente positive mais plus basse que celle de la courbe LM (voir ci-dessous) • trois sections: • trappe à liquidités (taux d‘intérêt minimal)demande de monnaie illimitée en raison du motif de spéculation • section normaledemande de monnaie dépend du taux d‘intérêt • section classiquedemande de monnaie indépendante du taux d‘intérêt KOOTHS: Modélisation macroéconomique avec MAKROMAT

  28. Le modèle IS-LM avec la courbe LF (IS-LM-LF) KOOTHS: Modélisation macroéconomique avec MAKROMAT

  29. La courbe LF: interprétation économique de la pente positive • exemple (économie fermée) • épargne:S = Saut+ sY·Y = Saut+ 0,2·Y • investissement: I = Iaut– br·r = Iaut– 2·r (r = i) • demande d‘encaisses:L = LSaut– li·i + lY·Y = LSaut– 8·i + 2·Y • point de départ: équilibre (WN = WA) • variation du revenu national: Y • WN = S = 0,2·Y • WA = LT = 2·Y • demande excédentaire: WNnet(Y)= –1,8·Y KOOTHS: Modélisation macroéconomique avec MAKROMAT

  30. lY li lY – sY li + br La courbe LF: interprétation économique de la pente positive (suite) • impact du taux d‘intérêt sur l‘offre de titres • i  WA = I = –2· i • i  WA = LS = –8·i • WAnet(i) = (–2 – 8)·i = –10·i • rétablissement de l‘équilibre par variation du taux d‘intérêt • WNnet(Y) = WAnet(i) • –1,8·Y = –10·i • (i/Y)LF = 0,18 < (i/Y)LM = 0,25 KOOTHS: Modélisation macroéconomique avec MAKROMAT

  31. cycledemarchés Généralisation I: vitesse de circulation et cycles de marchés réflexion préparatoire 1:séquence des transactions/marchés • marché des titres • marché des changes • achat de facteurs et productionrépartition primaire des revenus • rédistribution des revenusrépartition secondaire des revenus • marché des biens KOOTHS: Modélisation macroéconomique avec MAKROMAT

  32. Généralisation I: vitesse de circulation et cycles de marchés (suite) réflexion préparatoire 2:répartition sectorielle des liquidités au début d‘un cycle de marchés • l‘encaisse spéculative est exclusivement détenue par les ménages: LS = LSM • demande transactionelle: • entreprises: LTE = Y • ménages: LTM = Y–T • État (secteur publique): LTP = T • étranger (reste du monde): LR = 0l‘étranger ne détient pas d‘encaisses en monnaie du pays • L = LS + LT = LS + 2·Y KOOTHS: Modélisation macroéconomique avec MAKROMAT

  33. 2/lYsi: 2/lY = int(2/lY) int(2/lY)+1 si: 2/lY int(2/lY) Généralisation I: vitesse de circulation et cycles de marchés (suite) • le rapport revenu-encaisse transactionelle (lY, inverse de la vitesse de circulation) détermine le nombre de cycles de marchés (nCM) par période t: • lY= 2  nCM = 1 • lY= 1  nCM = 2 • lY= .3  nCM = 7 • en général nCM = dans le 2ième cas la partie inactive de la demande transactionelle peut être associée au motif de précaution KOOTHS: Modélisation macroéconomique avec MAKROMAT

  34. S + BSnCM I + ABnCM + M = L + lY – sY/nCM li + br /nCM lY – sY·lY/2 li + br ·lY/2 = > 0 Généralisation I: condition d‘équilibre définitive (économie fermée) • les transactions de capitaux se répartissent à montants égaux sur les cycles de marchés d‘une periode • impact sur la pente da la courbe LF (nCM = 2/lY) KOOTHS: Modélisation macroéconomique avec MAKROMAT

  35. Experimentations numériques (IS-LM-LF) • modèle IS-LM (économie fermée) • expérimentation 1:changer le rapport revenu-encaisse transactionelle mais éviter un choc monétaire (en ajustant la masse monétaire) pour observer l‘impact sur la pente de la courbe LF • expérimentation 2:simuler l‘augmentation des dépenses publiques et comparer le processus d‘adaptation pour le modèle avec et sans la modélisation explicite du marché des titres fichier de base pour les simulations: mbf-3.mm5 KOOTHS: Modélisation macroéconomique avec MAKROMAT

  36. Généralisation II: régimes de changes (économie ouverte) • IS-LM-EE (neutralisation totale: M = const) • S + BS + M = I + AB + L • IS-LM-EE (Mundell-Fleming en changes fixes) • S + BS + M(Z) = I + AB + LZ = variation nette du stock de devises • IS-LM-EE (Mundell-Fleming en changes flexibles) • S + BS + M + NK = I + LNK = surplus financier (entrées – sorties des capitaux) KOOTHS: Modélisation macroéconomique avec MAKROMAT

  37. Généralisation II: régime de changes fixes KOOTHS: Modélisation macroéconomique avec MAKROMAT

  38. Généralisation II: régime de changes flexibles KOOTHS: Modélisation macroéconomique avec MAKROMAT

  39. Modèle Mundell-Fleming avec la courbe LF (IS-LM-EE-LF) KOOTHS: Modélisation macroéconomique avec MAKROMAT

  40. Expérimentations numériques (IS-LM-EE-LF) • modèle IS-LM-EE (économie ouverte) • impact de la politique budgétaire expansive • en changes fixes (neutralisation totale) • en changes fixes (sans neutralisation) • en changes flexibles • points d‘intéresse • analyse dynamique • interaction entre le marché des titres et le marches des changes (observer les transactions financières) fichier de base pour les simulations: mbf-4.mm5 KOOTHS: Modélisation macroéconomique avec MAKROMAT

  41. Réciprocité des marchés des biens et des capitaux • marché des biens • demande: C + I + G + Ex • offre: Y + Im • marché des capitaux • demande: KN = I + AB • offre: KA = S + BS • équilibre • C + I = Y  I = S • déséquilibres • C + I < Y  I < S • C + I > Y  I > S KOOTHS: Modélisation macroéconomique avec MAKROMAT

  42. Note concernant les flux et les stocks sur le marché des capitaux • la demande et l‘offre bruttes sur le marché des capitaux comprennent les stocks résultant des périodes antérieures (t-1,t-2,...,t-) et les flux courants visant à changer ces stocks: • demande: WNbrut = WNt-1 + WNt • offre: WAbrut = WAt-1 + WAt • puisque les stocks antéreures s‘égalent exactement (équilibre épargne-investissement ex post), il suffit de considérer les flux pour déterminer l‘équilibre sur le marché des titres WNt = WAt WNt = WAt KOOTHS: Modélisation macroéconomique avec MAKROMAT

  43. Quatrième partie La politique budgétaire/monétaire et l‘équilibre à prix flexibles:la courbe Phillips et le rôle des anticipations KOOTHS: Modélisation macroéconomique avec MAKROMAT

  44. Idée du cours • reconstruire à fond (i.e. dès les racines du multiplicateur simple) le modèle OA-DA dynamique (OAD-DAD) en 5 étappes • observer l‘efficacité de la politique budgétaire/monétaire et les effets d‘éviction au cours de la modélisation du modèle OA-DA • simuler les processus d‘adaptation dans le modèle OAD-DAD en variant les hypothèses d‘anticipation KOOTHS: Modélisation macroéconomique avec MAKROMAT

  45. La situation: données importantes • économie fermée • revenu national: Y = 560 • taux de chomage: u = 20,00 % • emploi: A = 160 • offre de travail: Apot = 200 • niveau de prix: P = 1 • taux d‘intérêt nominal/réel: i = r = 12,4 % KOOTHS: Modélisation macroéconomique avec MAKROMAT

  46. La situation: fonctions de demande et de production • consommation: C = 50 + 0,625·YV • investissement: I = 277,5 – 9,375·r • dépenses publiques: G = 100 • prélèvements obligatoires: T = 50 + 0,2·Y • production: Y = min (3,5·A; 0,5·K) • stock de capital: K = 1600 • offre de travail: Apot = 200la production est proportionelle au niveau d‘emploi • niveau de production potentielle: Ypot = 700 KOOTHS: Modélisation macroéconomique avec MAKROMAT

  47. (1) Analyse Y-N: politique de l‘emploi • Questions: • Par quelle augmentation des dépenses publiques (G) peut-on réduire le chômage par 50 % si on admet pour applicables les conditions de la theorie du multiplicateur simple? • Quel rôle joue la monnaie (et la politique monétaire) dans ce type de modèle? KOOTHS: Modélisation macroéconomique avec MAKROMAT

  48. (2) Analyse IS-LM: effet d‘éviction par le taux d‘intérêt • Question:Étant données les informations suivantes, quel sera l‘effet de l‘augmentation des dépenses publiques du pas précédant? • Marché de la monnaie: • demande transactionelle: LT = 1·Y • demande speculative: LS = 2500 – 50·itaux d‘intérêt plancher: iu = 2 % • masse monétaire nominelle: MN = 2440 KOOTHS: Modélisation macroéconomique avec MAKROMAT

  49. (3) Analyse OA-DA: illusion monétaire • Question:Amplifiez l‘analyse en considérant que l‘offre de biens agrégée est une fonction du niveau des prix (voir ci-dessous). • principe de la formation des prix • markup-pricingcalcul de majoration basé sur les coûts salariaux unitairesP = (1 + 0,3125·(Y/Ypot))·wN/aP  Pu = 0,5 (niveau de prix plancher) • formation des salaires • taux de salaire nominal fixe: wN = 2,8(illusion monétaire) KOOTHS: Modélisation macroéconomique avec MAKROMAT

  50. (4) Analyse OA-DA: sauvegarde de la puissance d‘achat du salaire • Question:Supposez maintenant que les syndicats fixent le taux de salaire réel (w) au niveau du départ (w = 2,8) en réajustant les salaires nominals toutes les trois périodes selon le taux d‘inflation anticipé (méthode d‘extrapolation). Quels sera l‘effet à long terme de la politique budgétaire développée au début de cette étude de cas? KOOTHS: Modélisation macroéconomique avec MAKROMAT

More Related