160 likes | 323 Views
Thin Film Technology Problem based learning Session 1. PEALD TaN. Marianne Leinikka, Saurabh Roy, Ali Shah, Pavel Shirshnev & Heikki Viljanen. Contents. General applications of TaN. Our needs Materials flexibilility by different companies. Extended features. Benefits.
E N D
Thin Film Technology Problem based learning Session 1 PEALD TaN Marianne Leinikka, Saurabh Roy, Ali Shah, Pavel Shirshnev & Heikki Viljanen
Contents • General applications of TaN. • Our needs • Materials flexibilility by different companies. • Extended features. • Benefits. • Selecting a system. • Test runs and training.
Focus of interest • The basic idea was to compare and select the system based on: • Cost. • knowledge transformation. • Materials flexibility. • Equipment lifetime. • Comparison was done based on limited, available information. • Environmental issues are not a problem with PEALD nitrides[1]. • It is not possible to compare the prices. • At-least the Beneq installation requirements are met. • How the applications relate to our needs?
Applications of TaN films 1.) Diffusion barrier layer [7] - [15] High melting point, Hard material. Highly conductive, Thermodynamically stable, Disordered grain boundaries. 2.) Passivation layer against copper oxidation [22], [23] No aging effects after a long period of exposure to air, excellent film resistivity. 3.) Gate electrodes [16] - [21] High thermal stability, Inert to reaction with other materials, low impurity contentwhile fabricated with PEALD.
Applications of TaN films (contd.) 4.) Wear resistant coating or other protective coating. [25], [26] 5.) Biomedical applications [27] Good blood biocompatibility, histocompatible, hard material. 6.)High speed thermal printing head [25],[26] Small TCR, stable at high temperatures.
Research groups TKK • Microfabrication group: • Bio applications. • Thermal printing head, etc. • Electron physics group: • Diffusion barrier layer. • CMOS gate. • Optoelectonics group: • Circuitry for laser applications. VTT • 3D integration group: • Diffusion barrier layer.
The others • Which machine is known the best among • Scientific community • Industry • Can processes be directly trensferred to industry? • Micronova: • TKK -> feedback on Beneq devices • VTT -> feedback on Picosun devices • Both -> general feedback on Oxford
Company benefits • Oxford: • Well-known company • Plasma cleaning of chamber possible • In-situ measurements • Coupling of other equipment to ALD possible • Beneq: • Well-known Finnish company • Operational flexibility • In-situ measurements • Multi-wafer processes • Picosun: • Finnish company with long experience on ALD systems • ASM Microchemistry
Selecting a system • Based on the information available, Beneq seems suitable for research purposes. • With smaller modifications the system can be optimized into a small scale industrial unit. • Taking into consideration the well established infrastructure of the company in Finland, shipment and support issues are not critical. • Picosun is also Finland based company having a well known infrastructure for thermal ALD. • Oxford instrument's nearest service center is in Russia.
Acceptance tests and trainings • Acceptance tests on site for: • Good uniformity: less than 5% uniformity variation on wafer. • Good repeatability: less than 5 % thickness variation with a batch of 5 wafers. • Good step coverage: less than 5% thickness variation between the field thickness to the thickness from field to bottom of a 150µm via. • Constant film properties throughout the wafer: automated 4PP measurements. • Particle detection tests to secure the cleanroom environment. • Training and user right management.
References [1]Ainutlaatuisia nanomateriaaleja kerroksittain: Plasma aateloi ALD:n [2] www.beneq.com [3] www.picosun.com [4] www.asm.com [5] www.oxford-instruments.com [6] Dissertation of Petra Alén: Atomic layer deposition of TaN, NbN and MoN films for Cu metallizations, 2005 [7] K.-H. Min, K.-C. Chun, and K.-B. Kim, J. Vac. Sci. Technol. B 14 (1996) 3263-3269. [8] T. Laurila, K. Zeng, J.K. Kivilahti, J. Molarius, T. Riekkinen, and I. Suni, Microelectronic Eng. 60 (2002) 71-80. [9] Z.-C. Wu, C.-C. Wang, R.-G. Wu, Y.-L. Liu, P.-S. Chen, Z.-M. Zhu, M.-C. Chen, J.-F. Chen, C.-I. Chang, and L.-J. Chen, J. Electrochem. Soc. 146 (1999) 4290-4297.
References contd... [10] A.E. Kaloyeros, X. Chen, T. Stark, K. Kumar, S.-C. Seo, G.G. Peterson, H.L. Frisch, B. Arkles, and J. Sullivan, J. Electrochem. Soc. 146 (1999) 170-176. [11] S.-L. Cho, K.-B. Kim, S.-H. Min, H.-K. Shin, and S.-D. Kim, J. Electrochem. Soc. 146 (1999) 3724-3730. [12] S.J. Im, S.-H. Kim, K.-C. Park, S.-L. Cho, and K.-B. Kim, Mat. Res. Soc. Symp. Proc. 612 (2000) D6.7.1-D6.7.6. [13] D. Fischer, T. Scherg, J.G. Bauer, H.-J. Schulze, and C. Wenzel, Microelectronic Eng. 50 (2000) 459-464. [14] C.-L. Lin, S.-R. Ku, and M.-C. Chen, Jpn. J. Appl. Phys. 40 (2001) 4181- 4186. [15] H.-J. Bae, Y.-H. Shin, and C. Lee, J. Kor. Phys. Soc. 34 (1999) 504-509. [16] C. Lee and Y.-H. Shin, Mat. Chem. Phys. 57 (1998) 17-22. [17] Y.-J. Lee, B.-S. Suh, S.-K. Rha, and C.-O. Park, Thin Solid Films 320 (1998) 141-146.
References contd... [18] S. Gopalan, K. Onishi, R. Nieh, C.S. Kang, R. Choi, H.-J. Cho, S. Krishnan, and J.C. Lee, Appl. Phys. Lett. 80 (2002) 4416-4418. [19] J.K. Schaeffer, S.B. Samavedam et.al. J. Vac. Sci. Technol. B 21 (2003) 11-17 [20] Y.-S. Suh, G.P. Heuss, and V. Misra, Appl. Phys. Lett. 80 (2002) 1403- 1405. [21] Y.-S. Suh, G.P. Heuss, V. Misra, D.-G. Park, and K.-Y. Lim, J. Electrochem. Soc. 150 (2003) F79-F82. [22] C. Chaneliere, J.L. Autran, R.A.B. Devine, and B. Balland, Mater. Sci. Eng. Rep. R22 (1998) 269-322 [23] Y.-S. Suh, G. Heuss, H.Z. Zhong, S.-N. Hong, and V. Misra, VLSI Tech. Dig. (2001) 47-48 [24] T. Yeh, D. Swanson, L. Berg, and P. Karn, IEEE Trans. Magn. 33 (1997) 3631-3633. [25] I. Ayerdi et.al. Sens. Actuators A 60 (1997) 72-75.
References contd... [26] C. Linder, A. Dommann, G. Staufert, and M.-A. Nicolet, Sens. Actuators A 61 (1997) 387-391. [27] Y.X. Leng, H. Sun, P. Yang, J.Y. Chen, J. Wang, G.J. Wan, N. Huang, X.B. Tian, L.P. Wang, and P.K. Chu, Thin Solid Films 398-399 (2001) 471-475. [28] Moon-Kyun Song, Shi-Woo Rhee, Chemical Vapor deposition,(2008) 334-338.