1 / 16

PEALD TaN

Thin Film Technology Problem based learning Session 1. PEALD TaN. Marianne Leinikka, Saurabh Roy, Ali Shah, Pavel Shirshnev & Heikki Viljanen. Contents. General applications of TaN. Our needs Materials flexibilility by different companies. Extended features. Benefits.

iria
Download Presentation

PEALD TaN

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Thin Film Technology Problem based learning Session 1 PEALD TaN Marianne Leinikka, Saurabh Roy, Ali Shah, Pavel Shirshnev & Heikki Viljanen

  2. Contents • General applications of TaN. • Our needs • Materials flexibilility by different companies. • Extended features. • Benefits. • Selecting a system. • Test runs and training.

  3. Focus of interest • The basic idea was to compare and select the system based on: • Cost. • knowledge transformation. • Materials flexibility. • Equipment lifetime. • Comparison was done based on limited, available information. • Environmental issues are not a problem with PEALD nitrides[1]. • It is not possible to compare the prices. • At-least the Beneq installation requirements are met. •  How the applications relate to our needs?

  4. Applications of TaN films  1.) Diffusion barrier layer [7] - [15]         High melting point, Hard material.         Highly conductive, Thermodynamically stable,          Disordered grain boundaries.   2.) Passivation layer against copper oxidation [22], [23] No aging effects after a long period of exposure to air,          excellent film resistivity.   3.) Gate electrodes [16] - [21]         High thermal stability, Inert to reaction with other            materials, low impurity contentwhile fabricated        with PEALD.

  5. Applications of TaN films (contd.)  4.) Wear resistant coating or other protective          coating. [25], [26] 5.) Biomedical applications [27]  Good blood biocompatibility, histocompatible,            hard material.  6.)High speed thermal printing head [25],[26]  Small TCR, stable at high temperatures.

  6. Research groups TKK • Microfabrication group: • Bio applications. • Thermal printing head, etc. • Electron physics group: • Diffusion barrier layer. • CMOS gate. • Optoelectonics group: •  Circuitry for laser applications. VTT • 3D integration group:  • Diffusion barrier layer.

  7. Materials

  8. Extended features

  9. The others • Which machine is known the best among • Scientific community • Industry • Can processes be directly trensferred to industry? • Micronova: • TKK -> feedback on Beneq devices • VTT -> feedback on Picosun devices • Both -> general feedback on Oxford

  10.  Company benefits • Oxford: • Well-known company • Plasma cleaning of chamber possible • In-situ measurements • Coupling of other equipment to ALD possible • Beneq: • Well-known Finnish company • Operational flexibility • In-situ measurements  • Multi-wafer processes • Picosun: • Finnish company with long experience on ALD systems • ASM Microchemistry

  11. Selecting a system • Based on the information available, Beneq seems suitable for research purposes. • With smaller modifications the system can be optimized into a small scale industrial unit. • Taking into consideration the well established infrastructure of the company in Finland, shipment and support issues are not critical.  • Picosun is also Finland based company having a well known infrastructure for thermal ALD. • Oxford instrument's nearest service center is in Russia.

  12. Acceptance tests and trainings • Acceptance tests on site for: • Good uniformity: less than 5% uniformity variation on wafer. • Good repeatability: less than 5 % thickness variation with a batch of 5 wafers. • Good step coverage: less than 5% thickness variation between the field thickness to the thickness from field to bottom of a 150µm via. • Constant film properties throughout the wafer: automated 4PP measurements. • Particle detection tests to secure the cleanroom environment. • Training and user right management.

  13. References [1]Ainutlaatuisia nanomateriaaleja kerroksittain: Plasma aateloi ALD:n [2] www.beneq.com [3] www.picosun.com [4] www.asm.com [5] www.oxford-instruments.com [6] Dissertation of Petra Alén: Atomic layer deposition of TaN, NbN and MoN films for Cu metallizations, 2005 [7]  K.-H. Min, K.-C. Chun, and K.-B. Kim, J. Vac. Sci. Technol. B 14 (1996) 3263-3269. [8] T. Laurila, K. Zeng, J.K. Kivilahti, J. Molarius, T. Riekkinen, and I. Suni, Microelectronic Eng. 60 (2002) 71-80. [9]  Z.-C. Wu, C.-C. Wang, R.-G. Wu, Y.-L. Liu, P.-S. Chen, Z.-M. Zhu, M.-C. Chen, J.-F. Chen, C.-I. Chang, and L.-J. Chen, J. Electrochem. Soc. 146 (1999) 4290-4297.

  14. References contd... [10] A.E. Kaloyeros, X. Chen, T. Stark, K. Kumar, S.-C. Seo,             G.G. Peterson, H.L. Frisch, B. Arkles, and J. Sullivan, J. Electrochem. Soc. 146 (1999) 170-176. [11] S.-L. Cho, K.-B. Kim, S.-H. Min, H.-K. Shin, and S.-D. Kim, J. Electrochem. Soc. 146 (1999) 3724-3730. [12] S.J. Im, S.-H. Kim, K.-C. Park, S.-L. Cho, and K.-B. Kim, Mat. Res. Soc. Symp. Proc. 612 (2000) D6.7.1-D6.7.6. [13] D. Fischer, T. Scherg, J.G. Bauer, H.-J. Schulze, and C. Wenzel, Microelectronic Eng. 50 (2000) 459-464. [14] C.-L. Lin, S.-R. Ku, and M.-C. Chen, Jpn. J. Appl. Phys. 40 (2001) 4181- 4186. [15] H.-J. Bae, Y.-H. Shin, and C. Lee, J. Kor. Phys. Soc. 34 (1999) 504-509. [16] C. Lee and Y.-H. Shin, Mat. Chem. Phys. 57 (1998) 17-22. [17] Y.-J. Lee, B.-S. Suh, S.-K. Rha, and C.-O. Park, Thin Solid Films 320 (1998) 141-146.

  15. References contd... [18] S. Gopalan, K. Onishi, R. Nieh, C.S. Kang, R. Choi, H.-J. Cho, S. Krishnan, and J.C. Lee, Appl. Phys. Lett. 80 (2002) 4416-4418. [19] J.K. Schaeffer, S.B. Samavedam et.al. J. Vac. Sci. Technol. B 21 (2003) 11-17 [20] Y.-S. Suh, G.P. Heuss, and V. Misra, Appl. Phys. Lett. 80 (2002) 1403- 1405. [21] Y.-S. Suh, G.P. Heuss, V. Misra, D.-G. Park, and K.-Y. Lim, J. Electrochem. Soc. 150 (2003) F79-F82. [22] C. Chaneliere, J.L. Autran, R.A.B. Devine, and B. Balland, Mater. Sci. Eng. Rep. R22 (1998) 269-322 [23] Y.-S. Suh, G. Heuss, H.Z. Zhong, S.-N. Hong, and V. Misra, VLSI Tech. Dig. (2001) 47-48 [24] T. Yeh, D. Swanson, L. Berg, and P. Karn, IEEE Trans. Magn. 33 (1997) 3631-3633. [25] I. Ayerdi et.al. Sens. Actuators A 60 (1997) 72-75.

  16. References contd... [26] C. Linder, A. Dommann, G. Staufert, and M.-A. Nicolet, Sens. Actuators A 61 (1997) 387-391. [27] Y.X. Leng, H. Sun, P. Yang, J.Y. Chen, J. Wang, G.J. Wan, N. Huang, X.B. Tian, L.P. Wang, and P.K. Chu, Thin Solid Films 398-399 (2001) 471-475. [28] Moon-Kyun Song, Shi-Woo Rhee, Chemical Vapor deposition,(2008) 334-338.

More Related