330 likes | 481 Views
Measuring dileptons with HADES at 8 AGeV. A.Kugler. Nuclear Physics Institute, 250 68 Rez, Czech Republic for HADES collaboration. Outline . Motivation HADES concept, components C+C reactions (hadrons, dileptons) Au+Au reactions (hadrons in RPC).
E N D
Measuring dileptons with HADES at 8 AGeV A.Kugler Nuclear Physics Institute, 250 68 Rez, Czech Republic for HADES collaboration
Outline • Motivation • HADES concept, components • C+C reactions (hadrons, dileptons) • Au+Au reactions (hadrons in RPC)
First generation of dilepton spectrometers DLS at Bevalac @1AGeV CERES at SPS @158AGeV rp<<rB rp>>rB Data: R.J. Porter et al.: PRL 79(97)1229 Model: E.L. Bratkovskaya et al.: NPA634(98)168, BUU, vacuum spectral function, folded with experimental resolution (DM/M ~ 10%)
TOF SHOWER MDC RICH MAGNET HADES Detector • Features • 106 events / s • 45% geometrical acceptance (2p in f ,18 0< J < 85 0 ) • up to 200 charged particles • 1% mass resolution • Components • MOMENTUM RECONSTRUCTION& PARTICLE IDENTIFICATION • Mini Drift Chambers(MDC)in front and behind a superconducting toroid magnet • Time of Flight(TOF)wall • LEPTON ENHANCEMENT • Electromagnetic Showerdetector • LEPTON IDENTIFICATION • Hadron-blind Ring Imaging Cherenkov(RICH) detector
PreShower Magnet Coils HADES real RICH MDC I RICH Back view
TimeOfFlightdetector TOF wall covers >450: • 6 * 64 scint. Installed. • dt : 90 – 140 ps • dE/dx measurement • tracking TOFINO 180 <<450 • tof measurement t0.35 ns
deuterons Tof [ns] protons Energy loss [MeV] MDC-Meta-hadron identification • Probability density functions for all kinds of particles calculated in individual pid algorithms • Probability density functions from individual pid algorithms for the same type of particle are combined MDC-Tofino MDC-TOF
Simulations of HADES • event source: • UrQMD events • thermal source (Pluto++ event generator) • Separate production and analysis for each source of dileptons propagation of particles and detector response: Geant 3 based package HADES geometry and materials Digitization of simulated information to RAW DATA analysis: the same analysis steps as for real data keeping access to all information about particle
Mesons yields in thermal model • Pluto event generator based on thermal model with boost • Parameter: Inverse slope • 2 A GeV - 89 MeV • 8 A GeV - 105 MeV • One dilepton per event • 50k dileptons per source Priv.comm. with A.Adronic • Multiplicities of pions, eta from TAPS • omega,rho,phi from mt scaling
mT spectra – simulation T= 87± 1 Chi2/NDF=223/23 T= 86± 1 Chi2/NDF=257/23
mT spectra – experiment T1= 48 ± 2 T2= 86 ± 2 Chi2/NDF=143/24 T1= 44 ± 2 T2= 85 ± 2 Chi2/NDF=57/24 Preliminary Preliminary T= 73 ± 1 Chi2/NDF=451/24 T= 75 ± 1 Chi2/NDF=401/24
Single Lepton spectra CC 2AGeV November 2001 run Difference of Simulation and DATA < 20% CC 2.0 AGeV pT SIM- UrQMD - GEANT simulation with HADES geometry and detector response analyzed with the same cuts
C+C, charged particle multiplicities in META(URQMD) 2AGeV 8AGeV META SHOWER TOF
C+C, charged particle multiplicities,full simulation (GEANT, HYDRA) 2AGeV 8AGeV rec. track vs META hits META hits TOFINO hits TOF hits reconstructed tracks 0 20 0 20
Hadrons (pt vs y) C+C, 2AGeV pi+ pi- p URQMD HYDRA DST Efficiency & acceptance
Hadrons (pt vs y) C+C, 8AGeV pi+ pi- p URQMD HYDRA DST Efficiency & acceptance
Leptons from eta Dalitz (theta) C+C, 2 AGeV e+ e- PLUTO HYDRA DST acceptance+efficiency 0.37 0.40
Leptons from eta Dalitz (theta) C+C, 8 AGeV e+ e- PLUTO HYDRA DST acceptance+efficiency 0.30 0.37
Leptons from omega (pt vs y) 2 A GeV • e+ • e- • Pluto • Geant & Hydra • Eff & acc
Leptons from omega (pt vs y) 8 A GeV • e+ • e- • Pluto • Geant & Hydra • Eff & acc
Dilepton yields 1.94e2 4.30e4
Δy Tofino replacement by RPC
UPSTREAM VIEW DOWNSTREAM VIEW RPC RPCs test setup at GSI, April 2003
Δy Charged hadrons, Au+Au Rate per cm2, minimum bias, Au+Au 8 AGeV
Occupancy per slice, Au+Au, b=0-4 fm 8 AGeV 2 AGeV 0.3 0.7 30 60
Conclusions and Outlook • C+C • similar charged hadrons spectra and multiplicities in META • pion acceptance is by 20-30% lower in 8 AGeV than 2AGeV • single lepton (from eta Dalitz) acceptance by 10-20% lower • dilepton acceptance by 20% lower • Dilepton yield from omega about two orders of magnitude higher Au+Au • Can higher count rate be managed by RPC? • High occupancy per slice >> subdivision of RPC ”rods” To be done • dilepton coctail in Au+Au, • “experimental trigger” in Au+Au • combinatorial background both in C+C and Au+Au
Special thanks to: • Jan Novotný, NPI Řež • Diego Gonzales,USC/Santiago de Compostela • Marina Borisovna Golubeva, INR Moscow • Jaro Bielčik ( NPI Řež ), GSI Darmstadt and to • P.Tlustý, NPI Řež • Juan A. Garzón, USC/Santiago de Compostela • Fedor Guber, INR Moscow
HADES Collaboration • Bratislava (SAS, PI) • Catania (INFN - LNS) • Coimbra (Univ.) • Cracow (Univ.) • Darmstadt (GSI) • Dresden (FZR) • Dubna (JINR) • Frankfurt (Univ.) • Giessen (Univ.) • Milano (INFN, Univ.) • Moscow (INR, ITEP,MEPhI) • Munich (Tech. Univ.) • Nicosia (Univ.) • Orsay (IPN) • Rez (NPI ASCR) • Santiago de Compostela (Univ.) • Valencia (Univ.) HADES spokeperson, Piotr Salabura, Cracow