360 likes | 448 Views
Dileptons at RHIC. … and the Quest for Chiral Symmetry Restoration. Ralf Rapp Cyclotron Inst. + Physics Dept. Texas A&M University College Station, USA International CCAST Workshop “QCD and RHIC Physics” Beijing, 10.08.04. Outline. 1. Introduction 2. Chiral Symmetry in QCD
E N D
Dileptons at RHIC … and the Quest for Chiral Symmetry Restoration Ralf Rapp Cyclotron Inst. + Physics Dept. Texas A&M University College Station, USA International CCAST Workshop “QCD and RHIC Physics” Beijing, 10.08.04
Outline 1. Introduction 2. Chiral Symmetry in QCD 3. E.M. Correlation Function + Thermal Radiation 4. Low-Mass Dileptons 4.1 Axial-/Vector Correlators 4.2 Medium Effects and Excitation Function 4.3 Lattice QCD 5. Intermediate-Mass Dileptons:QGP Radiation? 6. Perspectives for RHIC 7. Conclusions
1.) Introduction:Towards QGP Discovery • So far: RHIC observables • ↔bulk properties of the produced matter: • - energy densitye≈20GeVfm-3↔ jet quenching(high-pt) • - thermalization + EoS↔ hydrodynamics (v0,v2) • - partonic degrees of freedom↔ coalescence (p/p,v2-scal) • Future: need to understand • microscopic properties (phasetransition, “QGP” !?): • - Deconfinement ↔quarkonia (J/y,Y, …) • - Chiral Symmetry Restoration↔ dileptons • ( - temperature ↔ photons )
qR qL • Profound Consequences: • energy gap: • ↔ mass generation! • massless Goldstone bosonsp0,± • “chiral partners” split,DM≈0.5GeV: > > > > - - qR qL JP=0±1± 1/2± 2.) Chiral Symmetry in QCD:Vacuum SU(2)L× SU(2)R invariant (mu,d≈0) - Spontaneous Breaking:strongqqattraction Bose Condensate fillsQCD vacuum! [cf. Superconductor: ‹ee›≠0 Magnet ‹M›≠0 , … ]
lattice QCD - cm ‹qq› 1.0 T/Tc cPTmany-bodydegrees of freedom?QGP (2 ↔ 2)(3-body,...) (resonances?) consistentextrapolatepQCD 0 0.05 0.3 0.75 e[GeVfm-3] 120, 0.5r0 150-160, 2r0 175, 5r0 T[MeV], rhad 2.2 “Melting” the Chiral Condensate • Excite vacuum (hot+dense matter) • quarks “percolate” / liberated • Deconfinement • ‹qq›condensate “melts”, ciral Symm. • chiral partners degenerate Restoration • (p-s, r-a1, … medium effects → precursor!) - How?
Central Pb-Pb 158 AGeV open charm Drell- Yan 2.3 Dilepton Data at CERN-SPS Low Mass:CERES/NA45Intermediate Mass:NA50 Mee [GeV] Mmm [GeV] • factor ~2 excess • open charm? thermal? … • strong excess around M≈0.5GeV • little excess in r,w,f region
= O(1) = O(αs ) e+ e- γ 3.) Electromagnetic Emission Rates E.M. Correlation Function: Im Πem(M,q) Im Πem(q0=q) also: e.m susceptibility (charge fluct):χ = Πem(q0=0,q→0) • In URHICs: • source strength:dependence onT, mB, mp , medium effects, … • system evolution:V(t), T(t), mB(t) , transverse expansion, … • nonthermal sources: Drell-Yan, open-charm, hadron decays, … • consistency!
qq 3.2 Two Regimes of Thermal Dilepton Radiation Thermal rate: q0≈0.5GeV Tmax≈0.17GeV , q0≈1.5GeV Tmax=0.5GeV
At Tc: Chiral Restoration 4.) Low-Mass Dileptons + Chiral Symmetry Im Πem(M) ~ Im Dr+w+f (M) vector-meson spectral functions dominated by r-meson → chiral partner: a1(1260) Vacuum pQCD cont. Chiral breaking:Q2 < 3GeV2
4.2 Vector Mesons in Medium: Many-Body Theory r Sp > Sp > rB/r0 0 0.1 0.7 2.6 (i) SPS Conditions • r-meson “melts” • in hot and dense matter • baryon density rB more • important than temperature Constraints: - branching ratiosB,M→rN,rp -gN,gAabsorpt.,pN→rN - QCD sum rules, lattice B*,a1,K1... + N,p,K… Dr(M,q:mB,T)=[M2-mr2-Srpp-SrB-SrM]-1
Dilepton Emission Rates - - [qq→ee] [qq+O(as)] baryon effects important even at rBnet=0: sensitive to rBtot=rB+rB , f more robust ↔ OZI in-med HG ≈ in-med QGP ! - Quark-Hadron Duality ?! (ii) Vector Mesons at RHIC
Lower SPS Energy BEVALAC/SIS Energy DLS • enhancement increases! • enhancement increases still: • DLS puzzle → HADES!? • precision test by NA60!? 4.3 Low-Mass Dileptons in URHICs Top SPS Energy • baryon effects important!
> D,N(1900)… Sp a1 Sp + + . . . > N(1520)… Sr > > Exp: - HADES(pA): a1→(p+p-)p - URHICs (A-A) : a1→pg 4.4 Current Status of a1(1260)
calculate integrate More direct! Proof of principle, not yet meaningful (need unquenched) 4.5 Comparison of Hadronic Models to LGT
Hydrodynamics (chem-eq) Thermal Fireball (chem-off-eq) Ti≈300MeV, QGP-dominated Ti≈210MeV, HG-dominated [RR+Shuryak ’99] [Kvasnikowa,Gale+Srivastava ’02] 5.) Intermediate-Mass Dileptons: NA50 (SPS) e.m. corr. continuum-like: Im Πem~ M2 (1+as/p+…) QGP + HG!
MinBias Au-Au (200AGeV) [R. Averbeck, PHENIX] [RR ’01] thermal run-4 results eagerly awaited … • low mass: thermal dominant • int. mass:cc e+X , rescatt.? • e-X - 6.) Dilepton Spectrum at RHIC
8.) Conclusions • Thermal Dileptons in QCD: Pem(q0,q,mB,T) • - low mass: r,w,f,chiral restoration ↔r-a1degeneracy • - intermediate mass: QGP radiation (open charm?!) • (- thermal photons ) • extrapolations into phase transition region • in-med HG and QGP shine equallybright • lattice calculations? deeper reason? • phenomenology for URHIC’s promising; • precision data+theory needed for definite conclusions • much excitement ahead: PHENIX, NA60, HADES, ALICE,… • and theory!
r Sp Emission Rates Hot and Dense Hadron Gas Low energy: vector dominance Sp q Im Πem(q0=q) ~ Im Dvec(q0=q) g q p γ p,a1,w High energy: meson exchange r p Total HG ≈ in-med QGP ! to be understood… [Kapusta,Lichard+Seibert ’91, … , Turbide,RR+Gale’04] 7.) Thermal Photons Quark-Gluon Plasma “Naïve” LO: q + q (g) → g (q) +γ But: other contributions inO(αs) collinear enhanced Dg=(t-mD2)-1~1/αs Bremsstrahlung Pair-ann.+scatt. + ladder resummation (LPM) [Aurenche etal ’00, Arnold,Moore+Yaffe ’01]
7.2 Perspectives on Photon Data at RHIC Predictions for Central Au-Au PHENIXData • large “pre-equilibrium” yield • from parton cascade (no LPM) • thermal yields ~ consistent • QGP undersat. small effect • consistent with pQCD only • disfavors parton cascade • not sensitive to thermal yet
Expanding Fireball + pQCD [Turbide,RR+Gale’04] • pQCD+Cronin at qt >1.5GeV • T0=205MeV suff., HG dom. 4.2 Comparison to Data I: WA98 at SPS Hydrodynamics: QGP + HG [Huovinen,Ruuskanen+Räsänen ’02] • T0≈260MeV, QGP-dominated • still true if pp→gX included
Includepp→ppgS-wave • slight improvement • in-medium “s” or D ?! 4.2 Comp. to Data II: WA98 “Low-qt Anomaly” Expanding Fireball Model [Turbide,RR+Gale’04] • current HG rate much below • 30% longer tFB 30% increase
T Im Πem(q0=q) p γ r cut 2 p γ kinetic theory: r p |M|2 2. Thermal Photon Radiation 2.1 Generalities Emission Rate per 4-volume and 3-momentum transverse photon selfenergy many-body language: in-medium effects, resummations, …
HLS MYM Kap.’91 (no a1) p p γ γ p,a1 r p r p p,a1 2.3.1 Hot Hadronic Matter: p-r-a1 Gas Chiral Lagrangian + Axial/Vector-mesons, e.g. HLS or MYM: • (g0,m0,s,x)fit tomr,a1 ,Gr,a1 • D/SandG(a1→pγ)not optimal [Song ’93, Halasz etal ’98,…] • Photon-producing reactions: mostly at dominant (q0>0.5GeV) gauge invariance! q0<0.5GeV a1-strength problematic
Factor 3-4 suppression At intermediate and High photon energies 2.3.1.b Hadronic Formfactors • quantitative analysis: account for finite hadron size • improves a1phenomenology • t-channel exchange: gauge invariance nontrivial [Kapusta etal ’91] • simplified approach: [Turbide,Gale+RR ’04] with
p γ p γ p K K* K K* (ii) wt-Channel p γ Gwrplarge! potentially important … w [Turbide,Gale +RR ’04] r p 2.3.2 Further Meson Gas Sources (i) Strangeness Contributions: SU(3)F MYM ~25%of pp→ργ ~40%of pr→pγ! (iii) Higher Resonances Ax-Vec:a1,h1→pg,Vec:w,w’,w’’→pgother:p(1300)→pg f1→rg,K1→KgK*→Kg a2(1320)→pg
r Sp > Sp > g N → p N,D gN gA g N → B* p-ex [Urban,Buballa,RR+Wambach ’98] 2.3.3 Baryonic Contributions • use in-medium r –spectral funct: • constrained by nucl. g-absorption: B*,a1,K1... N,p,K…
2.3.3(b) Photon Rates from r Spectral Function:Baryons + Meson-Resonances • baryonic contributions • dominant forq0<1GeV • (CERES enhancement!) • also true at RHIC+LHC: • atT=180MeV, mB=0 mB=220MeV
2.3.4 HG Emission Rates: Summary • wt-channel (very) important • at high energy • formfactor suppression (2-4) • strangeness significant • baryons at low energy mB=220MeV [Turbide,RR+Gale ’04]
2.3.5 In-Medium Effects • many-body approach: encoded in vector-spectral function, • relevant below M , q0 ~ 1-1.5 GeV • “dropping masses”: • large enhancement due • to increased phase space • [Song+Fai ’98, Alam etal ’03] • unless: • vector coupling decreases • towards Tc (HLS, a→1) • [Harada+Yamawaki ’01, • Halasz etal ’98]
HG: chemistry and trans. flow HG: chemistry [LHC] T [GeV] • R~exp(3mp) for pr→pg , … • yield up at low qt , down above • large blue shift from coll. flow • conserved BB use entropy • build-up of mp>0 (Np=const) • accelerated cooling 3.2 Thermal Evolution:QGP→ Mix→ HG QGP: initial conditions [SPS] • t0=1fm/c → t0=0.5fm/c: ~2-3 • s=CdQGT3; dQG=40 → 32: ~2 • pre-equilibrium?!
NN-1DN-1 Sp D + + + + ... > > > > > pD→N(1440), N(1520), D(1600) > in-medium vertex corrections incl. g’ p-cloud, (“induced interaction”) (1+ f p - f N) thermal p-gas > > 2.2.4 In-Medium Baryons: D(1232) long history in nuclear physics ! (pA , gA ) e.g. nuclear photoabsorption:MD, GDup by 20MeV little attention at finite temperature D-Propagator at finite rB and T[van Hees + RR ’04]
4.3 Perspectives on Data III: RHIC Predictions for Central Au-Au PHENIX Data • large “pre-equilibrium” yield • from parton cascade (no LPM) • thermal yields ~ consistent • QGP undersat. small effect • consistent with initial only • disfavors parton cascade • not sensitive to thermal yet