1 / 12

Sum of an Arithmetic Progression

Sum of an Arithmetic Progression. Last Updated: October 11, 2005. Let a 1 = first term of an AP Let a n = last term of an AP And d = the common difference Hence, the A.P can be written as a 1 , a 1 + d, a 1 + 2d, …. a n And the SUM OF A.P is

Download Presentation

Sum of an Arithmetic Progression

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Sum of an Arithmetic Progression Last Updated: October 11, 2005

  2. Let a1 = first term of an AP Let an = last term of an AP And d = the common difference Hence, the A.P can be written as a1, a1 + d, a1 + 2d, …. an And the SUM OF A.P is Sn= a1 + (a1 + d) + (a1 + 2d) + …+ an OR Sn = an + (an - d) + (an - 2d) + …+ a1 Jeff Bivin -- LZHS

  3. Summing it up Sn = a1 + (a1 + d) + (a1 + 2d) + …+ an Sn = an + (an - d) + (an - 2d) + …+ a1 Jeff Bivin -- LZHS

  4. 1 + 4 + 7 + 10 + 13 + 16 + 19 a1 = 1 an = 19 n = 7 Jeff Bivin -- LZHS

  5. 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20 + 22 + 24 a1 = 4 an = 24 n = 11 Jeff Bivin -- LZHS

  6. Find the sum of the integers from 1 to 100 a1 = 1 an = 100 n = 100 Jeff Bivin -- LZHS

  7. Find the sum of the multiples of 3 between 9 and 1344 Sn = 9 + 12 + 15 + . . . + 1344 a1 = 9 an = 1344 d = 3 Jeff Bivin -- LZHS

  8. Find the sum of the multiples of 7 between 25 and 989 Sn = 28 + 35 + 42 + . . . + 987 a1 = 28 an = 987 d = 7 Jeff Bivin -- LZHS

  9. Find the sum of the multiples of 11 that are 4 digits in length Sn = 10 01+ 1012 + 1023 + ... + 9999 a1 = 1001 an = 9999 d = 11 Jeff Bivin -- LZHS

  10. Evaluate Sn = 16 + 19 + 22 + . . . + 82 a1 = 16 an = 82 d = 3 n = 23 Jeff Bivin -- LZHS

  11. Review -- Arithmetic Sum of n terms nth term Jeff Bivin -- LZHS

  12. Problem solving The sum of the first n terms of a progression is given by Sn = n2 + 3n. Find, in terms of n the nth term. Sn = n2 + 3n Sn-1 = (n-1)2 + 3(n-1) = n2 – 2n + 1 + 3n – 3 = n2 + n – 2 Tn = Sn – Sn – 1 = n2 + 3n – (n2 + n – 2) = 2n + 2 Jeff Bivin -- LZHS

More Related