1 / 64

Hamiltonian approach to Yang-Mills Theory in Coulomb gauge

Hamiltonian approach to Yang-Mills Theory in Coulomb gauge. H. Reinhardt Tübingen. Collaborators : G. Burgio, M.Quandt, P. Watson D. Epple, C. Feuchter, W. Schleifenbaum, D. Campagnari, S. Chimchinda, M. Leder, W. Lutz, M. Pak, C. Popovici, J. Pawlowski, A. Szczepaniak, A.Weber,.

isaiah
Download Presentation

Hamiltonian approach to Yang-Mills Theory in Coulomb gauge

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hamiltonianapproachto Yang-Mills Theory in Coulomb gauge H. Reinhardt Tübingen Collaborators: G. Burgio, M.Quandt, P. Watson D. Epple, C. Feuchter, W. Schleifenbaum, D. Campagnari, S. Chimchinda, M. Leder, W. Lutz, M. Pak, C. Popovici, J. Pawlowski, A. Szczepaniak, A.Weber,

  2. aim of the talk • microscopicdescriptionofinfraredpropertieslikeconfinement • Hamiltonianapproachto YMT • Coulomb gauge

  3. Plan of Talk Hamiltonianapproachto Yang-Mills theory in Coulomb gauge basicresults: propagators comparisonwithlattice dielectricfunctionofthe Yang-Mills vacuum topologicalsusceptibility D=1+1: Gribovcopies conclusions

  4. References: C. Feuchter & H. R. hep-th/0402106, PRD70(2004) H. R. & C. Feuchter, hep-th/0408237, PRD71(2005) W. Schleifenbaum, M. Leder, H.R. PRD73(2006) D. Epple, H. R., W. Schleifenbaum, PRD75(2007) H. Reinhardt, D. Epple, Phys.Rev.D76:065015,2007 C. Feuchter & H. R,Phys.Rev.D77:085023,2008,D. Epple, H. R., W. Schleifenbaum, A. Szczepaniak, Phys.Rev.D77:085007,2008 H. Reinhardt,arXiv:0803.0504 [hep-th]PhysRevLett.101.061602, D. Campangnari & H. R.,arXiv:0807.1195 [hep-th], Phys.Rev.D, in press G. Burgio, M.Quandt, H.R.,arXiv:0807.3291 [hep-lat] related work: Swift Szczepanik & Swanson Zwanziger

  5. Gauß law: Canonical Quantization of Yang-Mills theory

  6. Gauß law: curved space resolution of Gauß´ law Faddeev-Popov Coulomb gauge

  7. YM Hamiltonian in Coulomb gauge Christ and Lee Coulomb term -arises from Gauß´law =neccessary to maintain gauge invariance -provides the confining potential

  8. forthevacuumbythevariationalprinciple metric of the space of gauge orbits: aim: solvingthe Yang-Mills Schrödingereq. withsuitableansätzefor

  9. forthevacuumbythevariationalprinciple aim: solvingthe Yang-Mills Schrödingereq. withsuitableansätzefor reflects non-trivial metric of the space of gauge orbits:

  10. QM: particle in a L=0-state Vacuumwavefunctional C. Feuchter, H.R, 2004 YMT gluon propagator variational kernel determined from gap equation

  11. Gluonenergy gluon confinement

  12. Propagators • gluonpropagator • ω(k)-gluonenergy • ghostpropagator • ghostformfactor d(k): deviationsfrom QED: • QED: • Coulomb potential

  13. numericalsolution • Confinementofgluons • Excellentagreementwith IR and UV analysis • (in)dependence on renormalizationscale D. Epple, H. Reinhardt, W.Schleifenbaum, PRD 75 (2007)

  14. Coulomb potential

  15. running coupling W. Schleifenbaum, M. Leder, H.R. PRD73(2006)

  16. Comparisonwithlatticedata

  17. comparisonwithlattice D=2+1 lattice: L. Moyarts, dissertation continuum: C. Feuchter & H. Reinhardt

  18. Latticecalculation in D=3+1 H.Reinhardt Cuccheri, Zwanziger Langfeld, Moyarts, Cuccheri, Mendes A. Voigt, M. Ilgenfritz, M. Muller-Preussker, A.Sternbeck G.Burgio, M. Quandt, S. Chimchinda, H. R.,

  19. ghostpropagator D=3+1 Burgio, Quandt, Chimchinda, H. R., PoS LAT2007:325,2007

  20. Gluonpropagator in D=3+1 K. Langfeld, L. Moyarts, 2004

  21. recentlatticecalculationsofD=3+1 gluonpropagator G. Burgio, M.Quandt, H.R., arXiv:0807.3291 [hep-lat] gaugefixing renormalization

  22. Staticgluonpropagator in D=3+1 G. Burgio, M.Quandt, H.R., arXiv:0807.3291 [hep-lat]

  23. Asymptotics lattice continuum IR: α=1 UV:γ=1.0 δ=0.0 • IR: α=0.98(2) • UV: γ=1.005(10) δ=0.000(2)

  24. The colorelectricfield • ED:

  25. The colorelectricfield • ED: • QCD:

  26. external static color sources electric field ghost propagator

  27. The color electric flux tube missing: back reaction of the vacuum to the external sources

  28. The colorelectricfield • ED: • QCD:

  29. The colorelectricfield • ED: • medium • QCD:

  30. The colorelectricfield • ED: • medium • QCD: • ghostpropagator

  31. The colordielectric „constant“ ofthe QCD vacuum • ED: • medium • QCD: • ghostpropagator

  32. The colordielectric „constant“ ofthe QCD vacuum • ED: • medium • QCD: • ghostpropagator H. Reinhardt,PhysRevLett.101.061602(2008)

  33. The colordielectricfuctionofthe QCD vacuum

  34. k The colordielectricfunctionofthe QCD vacuum • ghostpropagator • dielectric „constant“ • horizoncondition: • : • QCD vacuum-perfectcolordia-electricum • QED: screening

  35. no free color charges in the vacuum: confinement

  36. magnetic analog tothe QCD vacuum :superconductor • magmetism in matter: • perfectdia-magneticum : • Superconductor

  37. magnetic analog tothe QCD vacuum :superconductor • magmetism in matter: • perfectdia-magneticum : • superconductor • QCD vacuum:perfectdia-elektricum • dual superconductor • Duality:

  38. Confinementscenarios Gribov-Zwanziger: ≈ (Kugo-Ojima) dual superconductor: magneticmonopolecondensation

  39. Confinementscenarios Gribov-Zwanziger: ≈ (Kugo-Ojima) latticeevidence: monopolecondensation ≈ vortexcondensation ≈ dual superconductor: magneticmonopolecondensation centervortexcondensation Gribov-Zwanziger

  40. Kugo-Ojima confinement criteria: infrared divergent ghost form factor Gattnar, Langfeld, Reinhardt NPB262(2002)131 elimination of center vortices removes: -string tension (Wilson´s confinment criterium) -the infrared divergency from the ghost propagator (Kogu-Ojima confinement criterium)

  41. Coulomb potential J. Greensite, S. Olejnik , 2003

  42. Confinementscenarios Gribov-Zwanziger: ≈ (Kugo-Ojima) latticeevidence: monopolecondensation ≈ vortexcondensation ≈ dual superconductor: magneticmonopolecondensation centervortexcondensation Gribov-Zwanziger

  43. Chiralsymmeryof QCD • spontaneousbreaking: • quarkcondensation • constituentquarkmass • soft explicit breaking: • currentmassses • anomalousbreaking: • η´mass

  44. Witten-Veneziano-Formula in perturbation theory • topologicalsusceptibility • topologicalchargedensity

  45. -vacuum in theHamiltonianapproach Lagrangian canonicalmomentum hamiltonian topologicalsusceptibility

  46. Topologicalsusceptibility in the Hamilton approach D. Campangnari & H. R, Phys.Rev.D, in press exactcancellationofAbelianpartofBB 2-and 3-quasi-gluons on top ofthevacuum renormalization

  47. Numericalcalculations parametrizations:

  48. Numericalcalculations IR dominanceoftheintegrals runningcoupling: IR limit:

  49. NumericalResults

  50. Summary & Conclusion • Hamiltonianapproachto YMT in Coulomb gauge • Variationalsolutionofthe YM Schrödingereq. • gluonconfinement • quarkconfinement • satisfactoryagreementwithlatticedata • dielectricfunctionofthe YM vacuum • ε(k)=inverse ghost form factor • YM vacuum=perfect dual superconductor • Gribov-Zwanziger Conf.↔dual Meißner effect • topologicalsusceptibility

More Related