660 likes | 809 Views
Hamiltonian approach to Yang-Mills Theory in Coulomb gauge. H. Reinhardt Tübingen. Collaborators : G. Burgio, M.Quandt, P. Watson D. Epple, C. Feuchter, W. Schleifenbaum, D. Campagnari, S. Chimchinda, M. Leder, W. Lutz, M. Pak, C. Popovici, J. Pawlowski, A. Szczepaniak, A.Weber,.
E N D
Hamiltonianapproachto Yang-Mills Theory in Coulomb gauge H. Reinhardt Tübingen Collaborators: G. Burgio, M.Quandt, P. Watson D. Epple, C. Feuchter, W. Schleifenbaum, D. Campagnari, S. Chimchinda, M. Leder, W. Lutz, M. Pak, C. Popovici, J. Pawlowski, A. Szczepaniak, A.Weber,
aim of the talk • microscopicdescriptionofinfraredpropertieslikeconfinement • Hamiltonianapproachto YMT • Coulomb gauge
Plan of Talk Hamiltonianapproachto Yang-Mills theory in Coulomb gauge basicresults: propagators comparisonwithlattice dielectricfunctionofthe Yang-Mills vacuum topologicalsusceptibility D=1+1: Gribovcopies conclusions
References: C. Feuchter & H. R. hep-th/0402106, PRD70(2004) H. R. & C. Feuchter, hep-th/0408237, PRD71(2005) W. Schleifenbaum, M. Leder, H.R. PRD73(2006) D. Epple, H. R., W. Schleifenbaum, PRD75(2007) H. Reinhardt, D. Epple, Phys.Rev.D76:065015,2007 C. Feuchter & H. R,Phys.Rev.D77:085023,2008,D. Epple, H. R., W. Schleifenbaum, A. Szczepaniak, Phys.Rev.D77:085007,2008 H. Reinhardt,arXiv:0803.0504 [hep-th]PhysRevLett.101.061602, D. Campangnari & H. R.,arXiv:0807.1195 [hep-th], Phys.Rev.D, in press G. Burgio, M.Quandt, H.R.,arXiv:0807.3291 [hep-lat] related work: Swift Szczepanik & Swanson Zwanziger
Gauß law: Canonical Quantization of Yang-Mills theory
Gauß law: curved space resolution of Gauß´ law Faddeev-Popov Coulomb gauge
YM Hamiltonian in Coulomb gauge Christ and Lee Coulomb term -arises from Gauß´law =neccessary to maintain gauge invariance -provides the confining potential
forthevacuumbythevariationalprinciple metric of the space of gauge orbits: aim: solvingthe Yang-Mills Schrödingereq. withsuitableansätzefor
forthevacuumbythevariationalprinciple aim: solvingthe Yang-Mills Schrödingereq. withsuitableansätzefor reflects non-trivial metric of the space of gauge orbits:
QM: particle in a L=0-state Vacuumwavefunctional C. Feuchter, H.R, 2004 YMT gluon propagator variational kernel determined from gap equation
Gluonenergy gluon confinement
Propagators • gluonpropagator • ω(k)-gluonenergy • ghostpropagator • ghostformfactor d(k): deviationsfrom QED: • QED: • Coulomb potential
numericalsolution • Confinementofgluons • Excellentagreementwith IR and UV analysis • (in)dependence on renormalizationscale D. Epple, H. Reinhardt, W.Schleifenbaum, PRD 75 (2007)
running coupling W. Schleifenbaum, M. Leder, H.R. PRD73(2006)
comparisonwithlattice D=2+1 lattice: L. Moyarts, dissertation continuum: C. Feuchter & H. Reinhardt
Latticecalculation in D=3+1 H.Reinhardt Cuccheri, Zwanziger Langfeld, Moyarts, Cuccheri, Mendes A. Voigt, M. Ilgenfritz, M. Muller-Preussker, A.Sternbeck G.Burgio, M. Quandt, S. Chimchinda, H. R.,
ghostpropagator D=3+1 Burgio, Quandt, Chimchinda, H. R., PoS LAT2007:325,2007
Gluonpropagator in D=3+1 K. Langfeld, L. Moyarts, 2004
recentlatticecalculationsofD=3+1 gluonpropagator G. Burgio, M.Quandt, H.R., arXiv:0807.3291 [hep-lat] gaugefixing renormalization
Staticgluonpropagator in D=3+1 G. Burgio, M.Quandt, H.R., arXiv:0807.3291 [hep-lat]
Asymptotics lattice continuum IR: α=1 UV:γ=1.0 δ=0.0 • IR: α=0.98(2) • UV: γ=1.005(10) δ=0.000(2)
The colorelectricfield • ED:
The colorelectricfield • ED: • QCD:
external static color sources electric field ghost propagator
The color electric flux tube missing: back reaction of the vacuum to the external sources
The colorelectricfield • ED: • QCD:
The colorelectricfield • ED: • medium • QCD:
The colorelectricfield • ED: • medium • QCD: • ghostpropagator
The colordielectric „constant“ ofthe QCD vacuum • ED: • medium • QCD: • ghostpropagator
The colordielectric „constant“ ofthe QCD vacuum • ED: • medium • QCD: • ghostpropagator H. Reinhardt,PhysRevLett.101.061602(2008)
k The colordielectricfunctionofthe QCD vacuum • ghostpropagator • dielectric „constant“ • horizoncondition: • : • QCD vacuum-perfectcolordia-electricum • QED: screening
magnetic analog tothe QCD vacuum :superconductor • magmetism in matter: • perfectdia-magneticum : • Superconductor
magnetic analog tothe QCD vacuum :superconductor • magmetism in matter: • perfectdia-magneticum : • superconductor • QCD vacuum:perfectdia-elektricum • dual superconductor • Duality:
Confinementscenarios Gribov-Zwanziger: ≈ (Kugo-Ojima) dual superconductor: magneticmonopolecondensation
Confinementscenarios Gribov-Zwanziger: ≈ (Kugo-Ojima) latticeevidence: monopolecondensation ≈ vortexcondensation ≈ dual superconductor: magneticmonopolecondensation centervortexcondensation Gribov-Zwanziger
Kugo-Ojima confinement criteria: infrared divergent ghost form factor Gattnar, Langfeld, Reinhardt NPB262(2002)131 elimination of center vortices removes: -string tension (Wilson´s confinment criterium) -the infrared divergency from the ghost propagator (Kogu-Ojima confinement criterium)
Coulomb potential J. Greensite, S. Olejnik , 2003
Confinementscenarios Gribov-Zwanziger: ≈ (Kugo-Ojima) latticeevidence: monopolecondensation ≈ vortexcondensation ≈ dual superconductor: magneticmonopolecondensation centervortexcondensation Gribov-Zwanziger
Chiralsymmeryof QCD • spontaneousbreaking: • quarkcondensation • constituentquarkmass • soft explicit breaking: • currentmassses • anomalousbreaking: • η´mass
Witten-Veneziano-Formula in perturbation theory • topologicalsusceptibility • topologicalchargedensity
-vacuum in theHamiltonianapproach Lagrangian canonicalmomentum hamiltonian topologicalsusceptibility
Topologicalsusceptibility in the Hamilton approach D. Campangnari & H. R, Phys.Rev.D, in press exactcancellationofAbelianpartofBB 2-and 3-quasi-gluons on top ofthevacuum renormalization
Numericalcalculations parametrizations:
Numericalcalculations IR dominanceoftheintegrals runningcoupling: IR limit:
Summary & Conclusion • Hamiltonianapproachto YMT in Coulomb gauge • Variationalsolutionofthe YM Schrödingereq. • gluonconfinement • quarkconfinement • satisfactoryagreementwithlatticedata • dielectricfunctionofthe YM vacuum • ε(k)=inverse ghost form factor • YM vacuum=perfect dual superconductor • Gribov-Zwanziger Conf.↔dual Meißner effect • topologicalsusceptibility