450 likes | 735 Views
Yang-Mills Theory in Coulomb Gauge. H. Reinhardt Tübingen. non-perturbative approach to continuum YMT. C. Feuchter & H. R. hep-th/0402106, PRD70 hep-th/0408237, PRD71 hep-th/0408236 D. Epple, C. Feuchter, H.R., hep-th/0412231.
E N D
Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen non-perturbative approach to continuum YMT C. Feuchter & H. R. hep-th/0402106, PRD70 hep-th/0408237, PRD71 hep-th/0408236 D. Epple, C. Feuchter, H.R., hep-th/0412231 W. Schleifenbaum M. Leder H. Turan
Previous work: A.P. Szczepaniak, E. S. Swanson, Phys. Rev. 65 (2002) 025012 A.P. Szczepaniak, hep-ph/0306030 P.O. Bowman, A.P. Szczepaniak, hep-ph/0403074
Plan of the talk • Basics of continuum Yang-Mills theory in Coulomb gauge • Variational solution of the YM Schrödinger equation: Dyson- Schwinger equations • Results: • Ghost and gluon propagators • Heavy quark potential • Color electric field of static sources • YM wave functional • Finite temperatures • Connection to the center vortex picture of confinement
Classical Yang-Mills theory Lagrange function: field strength tensor
Gauß law: Canonical Quantization of Yang-Mills theory
Gauß law: curved space resolution of Gauß´ law Faddeev-Popov Coulomb gauge
YM Hamiltonian in Coulomb gauge Christ and Lee Coulomb term -arises from Gauß´law =neccessary to maintain gauge invariance -provides the confining potential
Importance of the Faddeev-Popov determinant defines the metric in the space of gauge orbits and hence reflects the gauge invariance
space of gauge orbits: metric aim: solving the Yang-Mills Schrödinger eq. for the vacuum by the variational principle with suitable ansätze for
Vacuum wave functional variational kernel determined from at the Gribov horizon: wave function is singular -identifies all configurations on the Gribov horizon preserves gauge invariance -topolog. compactification of the Gribov region FMR
Minimization of the energy set of Schwinger-Dyson equations for:
Gluon propagator transversal projector Wick´s theorem: any vacuum expectation value of field operators can be expressed by the gluon propagator
Ghost propagator ghost form factor d Abelian case d=1 ghost self-energy
bare vertex Ghost-gluon vertex rain-bow ladder approx: replace full vertex by bare one
Coulomb form factor f Schwinger-Dyson eq.
Regularization and renormalization: momentum subtraction scheme renormalization constants: In D=2+1 is the only value for which the coupled Schwinger-Dyson equation have a self-consistent solution ultrviolet and infrared asymtotic behaviour of the solutions to the Schwinger Dyson equations is independent of the renormalization constants except for horizon condition
Asymptotic behaviour D=3+1 -angular approximation ultraviolet behaviour infrared behaviour
ghost and Coulomb form factors gluon energy and curvature mass gap: Numerical results (D=3+1)
external static color sources electric field ghost propagator
a=3 a=8 The flux between 3 static color charges
dielectric „constant“ k The dielectric „constant“ of the Yang-Mills vacuum Maxwell´s displecement
Importance of the curvature Szczepaniak & Swanson Phys. Rev. D65 (2002) • the c = 0 solution does not produce • a quasi-linear confinement potential
to 1-loop order: The vacuum wave functional & Fadeev-Popov determinant
Robustness of the infrared limit Infrared limit = independent of stochastic vacuum exact in D=1+1 gauge fields at different points are completely uncorrelated
3-gluon vertex M.Leder W.Schleifenbaum
Finite temperature YMT • ground state wave functional • vacuum • gas of quasi-gluons with energy
Lattice: Karsch et al. minimization of the free energy: Energy density
C Center Vortices in Continuum Yang-Mills theory Wilson loop Linking number center element
Confinement mechanism in Coulomb gauge static quark potential : infrared dominant field configurations: Gribov horizon
center vortices Kugo-Ojima confinement criteria: infrared divergent ghost propagator Suman &Schilling (1996) Nakajima,… Bloch et al. Gattnar, Langfeld, Reinhardt, Phys. Rev.Lett.93(2004)061601, hep-lat/0403011 similar results in Coulomb gauge: Greensite, Olejnik, Zwanziger, hep-lat/0407032
center vortices Ghost Propagator in Maximal Center Gauge (MCG) • fixes SU(2) / Z (2) • ghosts do not feel the center Z (2) • no signal of confinement • in the ghost propagator • removal of center vortices does not change the ghost propagator (analytic result!)
center vortices Landau(Coulomb)gauge maximum center gauge Gribov´s confinement criteria (infrared ghost propagator) is realized in gauges where the center vortices are on the Gribov horizon
Summary and Conclusion • Hamilton approach to QCD in Coulomb gauge is very promising for non-perturbative studies • Quark and gluon confinement • Curvature in gauge orbit space (Fadeev –Popov determinant) is crucial for the confinement properties • Center vortices are on the Gribov horizon and are the infrared dominant field configuratons, which give rise to an infrared diverging ghost propagator (Gribov´s confinement scenario)