310 likes | 331 Views
This study presents an advanced atmospheric correction algorithm for GOCI ocean color images. The algorithm includes processes such as radiometric calibration, geometric correction, and removal of aerosol and sun-glint signals. Several atmospheric algorithms of the GOCI are discussed, including the Standard NASA Algorithm, SGCA, and SSMM. The process involves multiple steps like solar irradiance normalization, Rayleigh signal removal, and aerosol signal removal. By implementing this algorithm, accurate ocean color information can be obtained from GOCI satellite data.
E N D
Atmospheric Correction Algorithmfor the GOCI Jae Hyun Ahn* Joo-HyungRyu* Young Jae Park* Yu-Hwan Ahn* Im Sang Oh** Korea Ocean Research & Development Institute Seoul National University
I n d e x _ • Introduction _ • Atmospheric Correction • Atmospheric Algorithms of the GOCI • > Standard NASA Algorithm • > SGCA • > SSMM • Process of Atmospheric Correction _ • Standard NASA Algorithm • SGCA • SSMM • Result & Validation _ • Result • Validation • Conclusion _ Ocean Color
1. Introduction _ Atmospheric Correction Atmospheric Correction M(λ) *LTOA(λ) *Rrs(λ) Chl SS CDOM … Radiometric Calibration L2 algorithms LTOA(555nm) Rrs(555nm) Atmospheric Correction *L : radiance *Rrs : remote sensing reflectance
1. Introduction _Atmospheric Correction Clear water / thin aerosol case Case 1 water : LWis 1~7% of LTOA *Lr: Radiance of molecular scattering La : Radiance of aerosol scattring *Lw : Radiance of Ocean
1. Introduction _Atmospheric Correction Issue : GOCI has longer optical path than the polar orbit satellite Observation area • Earth GOCI equator 26˚ < Satellite zenith angle < 55˚ (MODIS : 0˚ < Satellite zenith angle < 40˚)
Introduction _ 3atmospheric Algorithms of the GOCI • Standard NASA algorithm • A classical standard atmospheric correction algorithm • Developed by M.Wang & H.R.Gordon • Aerosol selection, turbid-water iterative method, diffuse transmittance models are updated by J.H.Ahn • SSMM (Spectral Shape Matching Method) • Developed by Y.H.Ahn & P.Shanmugam • Using reference site • Aerosol models updated by J.H.Ahn • SGCA (Sun-Glint Correction Algorithm) • Developed by HYGEOS • Removing sun-glint & atmospheric signal • Polynomial fitting algorithm (ocean color & atmospheric model)
2. Process of Atmospheric Correction _ Raw Image Radiometric Calibration & Geometric Correction Geometric Corrected TOA Radiance Image LTOA(λ) Downward Solar Irradiance Normalization Longitude, Latitude, Time, SZA, VZA, AZA Reflectance of TOA Image ρ(λ)=ρ‘ (λ) + ρR (λ) Remove Rayleigh & Sun-glint Reflectance & Mask Radiative Transfer Equation, Cox&Munk Model Reflectance of Ocean + Aerosol Image ρ‘ (λ) = Td(λ)ρW(λ) + ρA(λ) + ρRA(λ) Atmospheric Correction • Remove Aerosol Reflectance • Radiative Transfer Equation, Aerosol Model Reflectance of Ocean Image ρW(λ) Standard NASA Algorithm SSMM SGCA Reflectance of Ocean Image Rrs(λ) Underwater Algorithm Level 2 Product Chl, SS, CDOM, Kd490, …
2. Process of Atmospheric Correction _ Step 1. Downward Solar Irradiance Normalization LTOA(λ) ρTOA (λ) Downward Solar Irradiance Normalization cos(θS)* • θS: solar zenith angle • F0(λ) : Extraterrestrial spectral irradiance
2 1 0 3 7 5 6 4 8 9 11 10 15 13 14 12 2. Process of Atmospheric Correction _ Step 1. Downward Solar Irradiance Normalization • Slot Correction of Solar Irradiance Normalization cos(θS)
2. Process of Atmospheric Correction _ Step 2. Remove Rayleigh Signal ρTOA(443nm) ρR(443nm) ρ‘ (443nm)
2. Process of Atmospheric Correction _ Step 3. Remove Rayleigh & Sun-glint Reflectance • Remove direct & sun-glinted Rayleigh reflectance • Computed by radiative transfer equation • Integrate with GOCI bands’ spectral response • Using pre-computed LUT • Wind speed : 0~16 m/s Scattering off a rough sea surface Molecular scattering
2. Process of Atmospheric Correction _ Step 3. Land & Cloud Masking • Using threshold of Band8 (865nm) • Masking 5x5 around the above threshold pixel
2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Signal ρ‘ (555nm) ρA(555nm)+ρRA (555nm) ρW (555nm)
2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Signal • Standard NASA algorithm • Basic Assumption : ρW(NIR) = 0 (GOCI’s NIR Band : 745nm, 865nm) Atmospheric Correction Calculate Rayleigh Scattering Select 2 Aerosol Type Multiple Scattering to Single Scattering for all Aerosol Types Get Two Aerosol Models (model1/model2) εmodel1(B7, B8) < εave(B7, B8) < εmodel2(B7, B8) • Calculate Single Scattering of 2 Specific Aerosol type Get ε(λ, B8) for all band Calculate Single Scattering Reflectance for all Band ρasmodel(λ) • Calculate Multiple Scattering of Specific Aerosol type 2 Aerosol Models sza/vza/aza ρasmodel1(λ) ρasmodel2(λ) Look-up Table from RTE (6S) Get ρa(λ) + ρra(λ) and t(λ) of 2 models Interpolate ρa(λ) + ρra(λ) and t(λ) of 2 models
2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Signal • Standard NASA algorithm • Aerosol model selection (Modified) Select 2 Aerosol Type Multiple Scattering to Single Scattering for all Aerosol Types Get Two Aerosol Models (model1/model2) εmodel1(B7, B8) < εave(B7, B8) < εmodel2(B7, B8) Average all aerosol models’ ε(B7, B8) Select 4 aerosol models Average 4 aerosol models’ ε(B7, B8) Select 2 aerosol models Get weight of 2 aerosol models
2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Signal • Aerosol models • Maritime (RH 50%, RH 80%, RH 99%) • Urban (RH 50%, RH 80%, RH 99%) • Continental (RH 50%, RH 80% RH 99%) East sea East sea East sea East sea Band 8 signal (aerosol signal) Aerosol removed signal (pure ocean signal : ρw(443)) Aerosol model selection result
2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Reflectance • SSMM (Spectral Shape Matching Method) • Assumption : ρW(NIR) = 0 (GOCI’s NIR Band : 745nm, 865nm) • Assumption : ρaerosol_model_1(λ) + ρaerosol_model_2(λ) = 0 • Use reference site’s spectrum shape Atmospheric Correction Calculate Rayleigh Scattering • Reflectance of Specific Aerosol type 2 Aerosol Models sza/vza/aza LUT ρa(λ) + ρra(λ) and t(λ) Reference site Get Aerosol reflectance Get Two Aerosol Models & mixing ratio from LUT
2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Reflectance • Iterative Method of NASA Standard Algorithm & SSMM • Turbid water : ρW(NIR) ≠0 ρTOA(NIR)=ρr(NIR) + ρa(NIR) + ρra(NIR) + t(NIR) ρf(NIR) + t(NIR)ρw(NIR) Atmospheric Correction ρr(λ) calculated by RTE ρa(λ) + ρra(λ) calculated by LUT t(NIR) calculated by LUT + RTE ρf(NIR) calculated by Cox&Munk’sEq BRDF ρw(λ), chl corrected ρw(λ) Underwater Algorithm ρw(λ) chl, ss Ocean Color Model CHL, TSM ρw(NIR)
2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Signal • Iterative Method of NASA Standard Algorithm & SSMM • Rrs(NIR) = f/Q*bb(NIR)/(a(NIR)+bb(NIR)) • Bb(NIR) = bbw(NIR)+bbchl(NIR) + bbnc(NIR) • a(NIR) = aw(NIR)+ achl(NIR) + anc(NIR ρW (865nm) ρW (865nm)
2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Signal • SGCA (Sun-glint Correction Algorithm) • Basic Assumption : ρWMOD(λ) is valid • Polynomial fitting : ρWMOD(λ) & ρAerosolMOD(λ) • ρWMOD(λ) : Using Biogenic optical model (by A.Morel) • ρAerosolMOD(λ) : C0 + C1λ-2 + C2λ-4 ρWMOD parameters (λ, chl, BbS) ρAerosolMOD parameters (C0, C1, C2) Min-error(λ) Final value (chl, C0, C1, C2) Td(λ) ρWMOD(λ) + ρA(λ)+ρRA(λ)+ error(λ) ρW(λ) ρ‘(λ)
2. Process of Atmospheric Correction _ Step 5. Apply Diffuse Transmittance • Extract Rayleigh diffuse transmittance • Generic Rayleigh diffuse transmittance model • τr(λ) : use H.R.Gordon’s model Tdr B1 B3 B4 B8 cos(Ф) Model’s Tdr RTE’s Tdr
2. Process of Atmospheric Correction _ Step 5. Apply Diffuse Transmittance • Extract Rayleigh diffuse transmittance • A simple Rayleigh diffuse transmittance model
2. Process of Atmospheric Correction _ Step 5. Apply Diffuse Transmittance • Get aerosol diffuse transmittance from AOT • Aerosol model, single scattering reflectance, single scattering albedo, phase function Get aerosol optical thickness • A simple aerosol diffuse transmittance model (Hajime Fukushima, 1998) • Using Aerosol+Rayleigh LUT (Future work) • A generic data driven method
3. Result & Validation _ Result • Comparison images of GOCI & MODIS (NASA Standard Algorithm) GOCI with NASA standard 2011/03/17 03:16 (UTC) MODIS with NASA standard 2011/03/17 05:05 (UTC)
3. Result & Validation _ Result • Comparison spectrums of GOCI & MODIS (with NASA Standard Algorithm) B1 : 412nm B2 : 443nm B3 : 490nm (MODIS : 488nm) B4 : 555nm (MODIS : 551nm) B5 : 660nm (MODIS : 667nm) B6 : 680nm (MODIS : 678nm) GOCI MODIS GOCI MODIS
3. Result & Validation _ Result • Comparison images of SSMM & MODIS (NASA Standard Algorithm) GOCI : SSMM 2010/09/17 04:16 (UTC) SSMM Rrs(412nm) SSMM Rrs(443nm) SSMM Rrs(490nm) SSMM Rrs(555nm) MODIS : NASA Standard Algorithm 2010/09/17 04:45 (UTC) MODIS Rrs(412nm) MODIS Rrs(443nm) MODIS Rrs(490nm) MODIS Rrs(555nm)
3. Result & Validation _ Validation • Comparison nLw spectrums of SSMM & SGCA & MODIS (NASA Standard Algorithm) SSMM nLw(555nm): 2010. 08. 20 04:16 (UTC) SGCA nLw(555nm): 2010. 08. 20 04:16 (UTC) MODIS nLw(555nm): 2010. 08. 20 04:25 (UTC) SSMM SGCA NASA Standard (MODIS)
4. Conclusion _ • NASA Standard Algorithm for the GOCI • Basic schema is all implemented. • Need to improve the ocean color model • Add more good arrangement aerosol models • Need to consider the new aerosol model for the GOCI observation area • Change to the look up table based diffuse transmittance estimation • Aerosol model selection and weight method update • SSMM • Looks reasonable but needs more tuning • Better result high turbidity water and blue absorption aerosol case • Also consider about horizontal aerosol type changes • Collect more reference site • SGCA • Relatively good matching at the high optical thickness case • Improvement for turbid water • Needs more local tuning