1 / 60

L. Fauvet, J.F. Macías-Pérez, F.-X. Désert

Modeling of the galactic polarized foreground emissions to minimize the contamination of the BB modes. L. Fauvet, J.F. Macías-Pérez, F.-X. Désert. Summary. ¤ Polarized foregrounds ¤ 3D modeling of the galaxy ¤ Contamination of the CMB data

isanne
Download Presentation

L. Fauvet, J.F. Macías-Pérez, F.-X. Désert

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Modeling of the galactic polarized foreground emissions to minimize the contamination of the BB modes L. Fauvet, J.F. Macías-Pérez, F.-X. Désert

  2. Summary ¤ Polarized foregrounds ¤ 3D modeling of the galaxy ¤ Contamination of the CMB data ¤ Constraint on the galactic magnetic field with FPP L. Fauvet Workshop FPP, 08/10/2010

  3. Galactic polarized foregrounds synchrotron emission (408 MHz) [Haslam et al, 1982] thermal dustemission(353 GHz) [Finkbeiner et al, 1999] relativistic electron dust grain ω B synchrotron emission dust emission starlight polarization L. Fauvet Workshop FPP, 08/10/2010

  4. 3D model of the Galaxy physical model of polarized foreground emissions depends on: •the shape of thegalactic magnetic field : regular component : MLS or ASS free parameter : pitch angle [Han et al, 2006] non regular component [Han et al, 2004] free parameter: Aturb •the distribution of relativistic electrons , free parameter: hr [Page et al, 2007; Sun et al, 2008] • the distribution of dust grains [Page et al, 2007; Paladini et al, 2007] [Han et al, 2006] L. Fauvet Workshop FPP, 08/10/2010

  5. 3D model of the Galaxy polarization fraction related to the cosmic ray energy dimension slope s : ps= 0.75 idem for thermal dust • integrating along the line of sight ◦ synchrotron emission ◦ thermal dust emission with: pd: the polarization fraction = 0.1 [Ponthieu et al, 2005] • extrapolation at various μ : βd • extrapolation at various μ :βs L. Fauvet Workshop FPP, 08/10/2010

  6. 3D model of the Galaxy : fit •408 MHz all-sky continuum survey[Haslam et al, 1982] •5 years of WMAP data • ARCHEOPS data at 353 GHz likelihood maximisation : [Hinshaw et al, 2009] [Benoit et al, 2003] L. Fauvet Workshop FPP , 08/10/2010

  7. 3D model of the Galaxy : fit 23 GHz Q U + :WMAP 5 years data green to red : synchrotron emission including MLS model of magnetic field for p = -70, -30 and 50 deg L. Fauvet Workshop FPP, 08/10/2010

  8. 3D model of the Galaxy : fit 353 GHz Q U + :ARCHEOPSdata green to red : model of thermal dust emission including MLS model of magnetic field for p = -70, -30 and 50 deg L. Fauvet Workshop FPP, 08/10/2010

  9. 3D model of the Galaxy : best fit model MLS field •synchrotron emission Aturb < 0.25 Breg p = - 30 ± 20 deg hr < 15 kpc βs = -3.3 ± 0.1 •dust thermal emission Aturb < 0.25 Breg p = - 20 ± 10 deg •constraint on the orientation of the regular component of the galacticmagneticfield. • turbulent component of the magneticfield not necessary • consistent constraints for the twoemissions [LF, Macías-Pérez et al, A&A in press, astro-ph: 1003.4405] L. Fauvet Workshop FPP, 08/10/2010

  10. 3D model of the Galaxy : best fit model 23 GHz I WMAP I SYNC Q WMAP Q SYNC U WMAP U SYNC L. Fauvet Workshop FPP, 08/10/2010

  11. 3D model of the Galaxy : best fit model TT EE BB TE TB EB 23 GHz L. Fauvet Workshop FPP, 08/10/2010

  12. 3D model of the Galaxy : best fit model 353 GHz I ARCH I DUST Q ARCH Q DUST U ARCH U DUST L. Fauvet Workshop FPP, 08/10/2010

  13. 3D model of the Galaxy : best fit model 353 GHz TT EE BB TE TB EB L. Fauvet Workshop FPP, 08/10/2010

  14. Contamination of the CMB data L. Fauvet Workshop FPP, 08/10/2010

  15. Contamination of the CMB data : galactic cut 100 GHz TT EE BB TE TB EB from blue to black: model of galactic emission for |b| > 15, 30, 40deg red : CMB simulations, r=0.1, ΛCDM [Komatsu et al, 2010] L. Fauvet Workshop FPP, 08/10/2010

  16. Contamination of the CMB data : galactic cut 100 GHz 217 GHz 70 GHz BB modes 143 GHz model of galactic foreground polarized emissions for |b| > 15,30,40deg red : simulation of CMB, r=0.1 L. Fauvet Workshop FPP , 08/10/2010

  17. Contamination of the CMB data : masks P06 N°1 N°2 N°3 N°1 : cut for Q353GHz > 50 μKRJ or I353GHz > 500 μKRJ (fsky = 63 %) N°2 : cut for Q353GHz > 100 μKRJ or I353GHz > 1000 μKRJ (fsky = 41 %) N°3: cut for Q353GHz > 300 μKRJ or I353GHz > 3000 μKRJ (fsky = 27 %) P06 : using WMAP data at 23 and 94 GHz [Gold et al, 2010] L. Fauvet Workshop FPP, 08/10/2010

  18. Contamination of the CMB data : masks 100 GHz TT EE BB TE TB EB from black to blue: model of galactic emission using masks N°1, N°2, N°3 Orange: using P06 mask red : simulation of CMB, r=0.1, ΛCDM [Komastu et al, 2010] L. Fauvet Workshop FPP, 08/10/2010

  19. Contamination of the BB modes We hope a residual foreground emissions contamination negligible in the error budget after component separation (Cl res,BB ) 2 << Svar (Cl BB )2 with 100 GHz Cl res,BB / Cl fore,BB (%) Expected residu after component separation < 3% L. Fauvet Workshop FPP, 08/10/2010

  20. Measurement of the galactic magnetic field with FPP sensitivity control of the systematicsaccuratemeasurement of the redondancygalacticmagneticfield •strongconstraintsexpected on the orientation of the fieldlines (error on p< 5 deg) • contribution of the turbulent magneticfieldconstraint ( error < 0.1 μG). • strongconstraints on the matter distribution σPlanck = 65μK /arcmin[Planck Bluebook 2004] σFPP = 5μK /arcmin[FPP proposal] ~13 times betterwith FPP [LF, Macías-Pérez et al, submitted to A&A] L. Fauvet Workshop FPP, 08/10/2010

  21. Conclusions •coherent models for the diffuse polarized galactic emissions. • useful to estimate foreground contamination to the CMB polarization. • with FPP we could improve our knowledge of the magnetic field and the matter content of the Galaxy. L. Fauvet Workshop FPP, 08/10/2010

  22. contamination of the CMB data 143 GHz TT EE BB TE TB EB from blue to black: model of galactic emission for |b| > 15, 30, 40 deg red : simulation of CMB, r=0.3 L. Fauvet

  23. Expected constraints with Planck and B-Pol •strongconstraintsexpected on p, βs and βd • no constraintsexpected on her and hdr •adding WMAP data improve the constraints σPlanck = 65μK σB-Pol = 5μK 13 times betterusing B-Pol data L. Fauvet

  24. 3D model of the Galaxy • feature of the galactic magnetic field: regularcomponent [Han et al, 2006] turbulent component [Han et al, 2004] • matter distribution [Page et al, 2007] [Han et al, 2006] • distribution of relativistic electrons: • distribution of dust grains

  25. Expected constraints on the galactic magnetic field with Planck and FPP [LF, Macías-Pérez et al, to besubmitted to A&A] L. Fauvet

  26. expected constraints with Planck and BPol • simulations of Q and U map of Planck and WMAP 8-years data for all polarizedchannels : • 4 kind of simulations : ->with or without turbulent component of the magneticfields (Aturb = 0.25) -> with spectral index spatialy constants (βs = -3.0, βd = 1.4) or variables • noise : gaussianrandom simulations [Planck Bluebook, 2004] • CMB : model ΛCDM [Komatsu et al, 2010] βd = 1.4 ± 0.3 [Macías-Pérez, LF et al, in preparation] -3.5 < βs <-2.8 [Gold et al, 2010] L. Fauvet

  27. 3D model of the Galaxy : optimisation 23 GHz Q U WMAP 5 yearsdata+ synchrotronemission (from green to red) (MLS model of magnetic field and exponnential distribution of relativistic electrons) L. Fauvet

  28. 3D model of the Galaxy : optimisation 353 GHz Q U galactic profiles for various values of the latitudes the ARCHEOPSdata and our model of thermal dust emission (MLS model of magnetic field and exponential distribution of dust grains) L. Fauvet

  29. 353 GHz Q U MLS field for different values of p L. Fauvet

  30. The PLANCK mission Planck : ESA mission dedicated to the CMB anisotropies measurement • large frequency range : LFI : 30, 44, 70 GHz HFI :100, 143, 217, 353, 545, 857 GHz • full-sky coverage and angular resolution of 5’ • sensitivity limited by the ability to subtract astrophysical foregrounds ~ 2.10-6K • Ultimate measurement of the CMB temperature anisotropies • Best possible measurement of polarization with currently available technologies L. Fauvet PCHE meeting, 08/06/2010

  31. polarized foregrounds I WMAP 7-years, Ka band Q U [Gold et al, 2010] L. Fauvet PCHE meeting, 08/06/2010

  32. polarized foregrounds instrumental noise dust synchrotron free-free galaxies SZ (cinetic) SZ (thermal) CMB synchrotron dominates at ν< 70 GHz thermal dust dominates at ν> 70 GHz L. Fauvet PCHE meeting, 08/06/2010

  33. expected CMB measurements with Planck TT EE [PLANCK Bluebook,‚the PLANCK collaboration, 2005] L. Fauvet

  34. contamination of the CMB data 100 GHz 217 GHz 70 GHz BB 143 GHz from blue to black: model of galactic emission for |b| > 15, 30, 40 deg red : simulation of CMB, r=0.1 L. Fauvet

  35. MLS ASS [Sun et al, 2008]

  36. expected constraints with Planck

  37. 143 GHz

  38. 3D model of the galaxy Bturb = (8μ0EB)1/2 with μ0 = 4π.10-7H.m-1 • 3D gaussian simulation with used a power spectrum Aturb (dimensionless) : normalisation of the turbulent component turbulente component •non regular field at all scales • same intensity as the regular component • Kolmogorov spectrum [Han et al, 2006] •1/k > 15 kpc : C = (9.5 ± 0.3 )*10-13erg.cm-3.kpc α = -5/3 • 0.5 < 1/k < 15 kpc : C = (6.8± 0.3 )*10-13erg.cm-3.kpc α = -0.37 [Han et al, 2006]

  39. 3D model of the Galaxy: optimisation I Haslamdata, MLS field for different values of Aturb L. Fauvet WG7 meeting, 14/07/2010

  40. Best fit parameters WMAP 5yrs / synchrotron BSS field, at 23 GHz Aturb p(deg) hr βs Aturb < 0.25, p = - 20 ± 10 deg hr < 15kpc, βs = -3.4 ± 0.1

  41. impact on the CMB data EE BB red : synchrotron emission model blue: thermal dustemission model black: 3 yearsofWMAP and ARCHEOPS data L. Fauvet Cosmology Workshop09, 12/11/2009

  42. The PLANCK schedule • launched the 14thof May 2009 from Kourou •travelled to L2 point and cooling until end of June 2009 • final checks until 15th of August NOW: 14 months of operations for 2 all-sky surveys 2012: First public data release by ESA ≥ 2013 : Potential second data surveys (He) First light of Planck [Bouchet, 2009] L. Fauvet Rencontres de Moriond, 2010

  43. The Planck mission : scientific objectifs □ Primary anisotropies: • cosmological parameters • physics of the Early Universe • non-gaussianity □ Secondary anisotropies: • ISW • gravitational lensing • reionisation • galaxy clusters □ Extragalactic sources : • radio sources • dusty galaxies and their contaminants □ Galactic & Solar systems : • galactic magnetic field & ISM • planets and asteroides … [“Planck bluebook”, the Planck collaboration, 2005] L. Fauvet

  44. Polarisation Formation de la polarisation Section efficace Diffusion Thomson des photons sur les électrons: d s | e . e = ¢ d W Anisotropies quadrupolaires responsables de la polarisation du CMB (Kosowsky et al (1994)) Lauranne Fauvet 28/06/2007

  45. contamination of the CMB data 100 GHz 217 GHz 70 GHz BB 143 GHz from blue to black: model of galactic emission for |b| > 15, 30, 40 deg red : simulation of CMB, r=0.3 L. Fauvet Rencontres de Moriond, 2010

  46. contamination of the CMB data 100 GHz TT EE BB TE TB EB from blue to black: model of galactic emission for |b| > 15, 30, 40 deg red : simulation of CMB, r=0.3 L. Fauvet Rencontres de Moriond, 2010

  47. Polarisation Paramètres de Stokes Décomposition en harmoniques sphériques I : intensité Q,U: polarisation linéaire (dépendants du choix du référentiel). V : polarisation circulaire (absente du CMB). T B E Décomposition en harmoniques sphériques spinnées Perturbations ►Perturbations tensorielles ►Perturbations scalaires Sur densité Sous densité • Passage d’une onde gravitationnelle. Génère des modes E et B • Gradient de vitesse non nul dans le repère de l’e- quadrupôle. Produit du mode E (Hu et al (1997)) (Zaldarriaga et al (1998)) Lauranne Fauvet 28/06/2007

  48. The Planck mission φ = φL + fNLφL2 φ~ : gaussian, linear curvature perturbation on the matter dominating era [Salopek & Bond, 1990] fNL ~ 0.05 canonical inflation [Maldacena,2003 ; Acquaviva et al, 2003] fNL ~ 0.1-100 higher order derivatives (biblio … ) fNL > 10 curvaton models [Lyth, Ungarelly et Wands, 2003] fNL ~ 100 : ghost inflation [Arkani-Hamed et al, 2004] …

More Related