1 / 28

Physical Layer

Wireless LANs June – September 2005. Physical Layer. ผศ. ดร . อนันต์ ผลเพิ่ม Asst. Prof. Anan Phonphoem, Ph.D. anan@cpe.ku.ac.th http://www.cpe.ku.ac.th/~anan Computer Engineering Department Kasetsart University, Bangkok, Thailand. Outline. Physical Layer Architecture

isha
Download Presentation

Physical Layer

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Wireless LANsJune – September 2005 Physical Layer ผศ. ดร. อนันต์ผลเพิ่ม Asst. Prof. Anan Phonphoem, Ph.D. anan@cpe.ku.ac.th http://www.cpe.ku.ac.th/~anan Computer Engineering Department Kasetsart University, Bangkok, Thailand

  2. Outline • Physical Layer Architecture • Physical Layer Operations • IEEE 802.11 Physical Layer • FHSS • DSSS • IR

  3. Physical Layer Architecture MAC Layer PHY SAP Physical Layer PLCP Sublayer PMD SAP PMD Sublayer

  4. PLCP Sublayer • Physical Layer Convergence Procedure • Communicate to MAC via primitives through Physical Layer Service Access Point (SAP) • Prepare PLCP protocol data unit (PPDU) (append fields to MPDU) • PPDU provides for asynchronous transfer of MPDU between stations

  5. PMD Sublayer • Physical Medium Dependent • Provide actual transmission and reception of Physical Layer entities via wireless medium • Interface directly to the medium • Provides modulation and demodulation of the transmission frame

  6. Physical Layer Operations • 3 State machines • Carrier Senses: determine the state of the medium • Transmit: send the data frame • Receive: receive the data frame

  7. Physical Layer Service Primitives

  8. MAC PMD PLCP Carrier Sense Function • Station is not in Tx • or Rx mode • Clear channel • assessment Check medium Carrier Sense info • Medium Idle PHY-CCA.indicate • Clear channel • assessment Check medium Carrier Sense info • Medium Busy PHY-CCA.indicate • Check preamble • monitor header Carrier Sense info • Try to synchronize

  9. MAC PLCP PMD … … PHY-DATA.request Pass Data PHY-DATA.confirm Transmit Function PHY-TXSTART.request Switch to TX mode PHY-TXSTART.confirm • Switch to TX mode • Sending preamble & header to antenna @ 1 Mbps PHY-DATA.request Pass Data PHY-DATA.confirm • Transmit data @ specified rate … PHY-TXEND.request Switch to RX mode PHY-TXEND.confirm • Switch to RX mode

  10. MAC PMD PLCP PHY-DATA.indication DATA … … PHY-DATA.indication DATA Receive Function • Clear channel • assessment found • media busy Carrier Sense info • Check preamble • monitor header • Check Power level • > 85 dBm PHY-RXSTART.indication • Check CRC • Set octet counter … • Final Octet PHY-RXEND.indication

  11. Multiple Antenna Diversities • Receive function will operate with • Single Antenna • Multiple Antennas • Signal Degradation Factors • Distance • Atmosphere • Barrier • Multiple-path propagation • Decrease the signal strength • Use multiple antennas (diversity) to improve the received signal

  12. IEEE 802.11 PHY Layer • FHSS Physical Layer • DSSS Physical Layer • Infrared (IR) Physical Layer

  13. FHSS Physical Layer • Low cost • Low power consumption • Most tolerant to noise • Low potential data rate • Medium range (< DSSS)

  14. FHSS Architecture • FHSS PLCP Sublayer • FHSS PMD Sublayer • Primitives

  15. PLCP Preamble PLCP Header 80 bits 16 bits 12 bits 4 bits 16 bits 0-4095 Octets SYNC Start Frame Delimiter PLW PSF Header Error Check Whitened PSDU Payload (MPDU) Reduce DC bias, scramble PLCP Signaling Field: data rate (1- 4.5 Mbps) 16-bit CRC 0000110010111101: define the beginning of a frame PSDU Length word 0 & 1 alternating : synchronization purpose FHSS PLCP frame PSDU=PLCP Service Data Unit

  16. FHSS PMD • Perform actual Tx/Rx of PPDU by hopping between channel (hopping sequence) • Provides FHSS modulation/demodulation

  17. FHSS PMD Service Primitives

  18. DSSS Physical Layer • High cost • High power consumption • High potential data rate • More range

  19. DSSS Architecture • DSSS PLCP Sublayer • DSSS PMD Sublayer • Primitives

  20. PLCP Preamble PLCP Header 8 bits 128 bits 16 bits 8 bits 8 bits 16 bits SYNC Start Frame Delimiter Signal Service Length Frame Check Sequence MPDU 16-bit CRC Reserved #microsec. To transmit the MPDU 1111001110100000: define the beginning of a frame Modulation type: data rate 0 & 1 alternating : synchronization purpose DSSS PLCP frame

  21. DSSS PMD • Perform actual Tx/Rx of PPDU • Provides DSSS modulation/demodulation

  22. DSSS PMD Service Primitives

  23. IR Physical Layer • Lowest cost • Highest tolerant to RF noise • Lowest range • Need ceiling • More secure • No frequency regulating • No product ? • IrDA: Infrared Data Association Standard

  24. IR Architecture • IR PLCP Sublayer • IR PMD Sublayer

  25. PLCP Preamble PLCP Header 57-73 slots 4 slots 3 slots 32 slots 16 slots 16 slots 0-2500 octets SYNC Start Frame Delimiter Data Rate DC Level Adjust. Length Frame Check Sequence MPDU 16-bit CRC Specified for 1 and 2 Mbps #microsec. To transmit the MPDU 1001: define the beginning of a frame Data rate Pulse alternating : synchronization purpose IR PLCP frame

  26. IR PMD • Mostly use diffused infrared • Perform actual Tx/Rx of PPDU, translate binary to infrared light • Provides IR modulation/demodulation

  27. IR PMD • Noise affects amplitude (not phase)  Pulse position reduces interference • Pulse position modulation :PPM • Vary position of pulse • For 1 Mbps  16 PPM • For 2 Mbps  4 PPM

  28. Pulse Position Modulation

More Related