100 likes | 109 Views
Learn about types of solutions, solubility, concentration expressions, and colligative properties affecting solution behavior. Explore solvents, solutes, and colloid formation processes. Discover various units of concentration for precise measurements.
E N D
Overview • Solution formation • Types of solution • Solubility and the solution process • Effect of temperature and pressure on solubility • Colligative properties • Ways of expressing concentration • Vapor pressure of a solution • Boiling-point elevation and freezing point depression. • Osmosis • Colligative properties of ionic solutions • Colloid Formation • Colloids
Types of Solution • Solution – homogeneous mixture of two or more substances of ions or molecules. E.g. NaCl (aq) • Solvent = component which is the component in greater amount. • Solute = component which is present in the smaller amount. • Gaseous = gases are completely miscible in each other. • Liquid = gas, liquid or solid solute dissolved in solute. • Solid = mixture of two solids that are miscible in each other to form a single phase. • Colloid – appears to be a homogeneous mixture, but particles are much bigger, but not filterable. E.g. Fog, smoke, whipped cream, mayonnaise, etc. • Suspension: larger particle sizes, filterable. E.g. mud, freshly squeezed orange juice.
Solubility and the Solution Process • The solid dissolves rapidly at first but as the solution approaches saturation the net rate of dissolution decreases since the process is in dynamic equilibrium. • When the solution has reached equilibrium the amount of solute does not change with time; • At equilibrium: the rate of dissolution = rate of solution Fig. 12.2 Solubility Equilibrium
Solubility and the Solution Process II • Saturated solution: maximum amount of solute is dissolved in solvent. Trying to dissolve more results in undissolved solute in container. • Solubility: Amount of solute that dissolves in a solvent to produce a saturated solution. (Solubility often expressed in g/100 mL.) E.g. 0.30 g of I2 dissolved in 1000 g of H2O. • Unsaturated solution: less than max. amount of solute is dissolved in solvent. E.g. 0.20 g of I2 dissolved in 1000 g of H2O. • Supersaturation = more solute in solution than normally allowed; we call this a supersaturated solution.
Units of Concentration • Physical properties of solutions are often related to the concentration of the solute in the solution.Molarity • Mole fraction: The same quantity we have used in fractional abundances as well as with gases (Dalton’s law). A unitless number.Weight (mass) Percent (wt%) – similar to mole fraction except use mass of each. • E.g. determine the wt% of a solution prepared by dissolving 1.44 g of NaCl in 100.0 mL of water. Assume that the density of water is 1.00 g/mL • Other units: parts per million (ppm) and parts per billion (ppb) for small concentrations.
Units of Concentration2 • Molality(m): defined as the mol of solute per kg of solvent. Unlike Molarity this unit is temperature independent. E.g. determine the molality of a solution prepared by dissolving 1.44 g NaCl into exactly 100.0 mL of water. Assume the density of water is 1.00 g/mL. E.g.2 Determine mass % of solution made from dissolving 30.0 g H2O2 with 70.0 g H2O. E.g.3 Determine molality of 30% H2O2(aq) E.g.4 Determine the mole fraction of the compound in E.g. 3 E.g.5 Concentrated ammonia is 14.8 M and has a density of 0.900 g/mL. What is the molar volume and the molality?