1 / 14

Rayonnement électromagnétique de solitons d’une antenne à plasma confiné

Rayonnement électromagnétique de solitons d’une antenne à plasma confiné. G.Dubost A.Bellossi 14th Colloque International sur la compatibilité Electromagnétique ,session C4 Bio- électromagnétisme, CEM 2008 Paris, « Les Cordeliers » 20-23 mai 2008. wave amplifier. Confined plasma.

Download Presentation

Rayonnement électromagnétique de solitons d’une antenne à plasma confiné

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Rayonnement électromagnétique de solitons d’une antenne à plasma confiné G.Dubost A.Bellossi 14th Colloque International sur la compatibilité Electromagnétique ,session C4 Bio- électromagnétisme, CEM 2008 Paris, « Les Cordeliers » 20-23 mai 2008.

  2. wave amplifier Confined plasma Transmitter Spectrum analyser loop Square wave generator Antenna tuner

  3. The confined plasma antennaPo=k.To.no is the argon gas pressure With Po =6.65 103 Pascals, To=300 K: no=1.6 1024 /m3 is the neutral argon density. k is the Boltzmann constant. For a neutral gas with an ionization degree α equal to:0.01 we have: n=1.6 1022 /m3 =α.n0 n is the electronic and ion densities.

  4. SOLITONThe hydrodynamic theory explains the soliton øM=e.ФM/k.Te is the max normalized potential between two ions. Te is the electron temperature.ØMis given by the following equation :exp(ØM )+(V/Cs )[(V/Cs )2- 2. ØM ]1/2 =(1+ V/Cs )with Cs =(kTe /mi )1/2 , mi being the ion mass.V is the speed of the soliton ψ ,which is a solution of the non linear equation of Kortweg-de-Vries (b):∂ψ/∂η+ψ.(∂ψ/∂ξ)+(1/2)∂3ψ/∂ξ3 =0ξ=µ1/2 (x/D-ωi t) , η= µ3/2 ωi t , ωi =e(n/ miε0)1/2 .

  5. ωi is the plasma ionic pulsation such that: • tr =1/ ωi <<T=1/f • tr is the relaxation time • f is the modulation frequency

  6. SOLITON (following)The first order solution ψ=µø is: Ψ=3v0 /ch2 [(v0 /2)1/2 (ξ-v0 η)] (d) • Δn is the ion density used to generate one soliton of max amplitude ψM =3v0 =Δn/n. The soliton speed is :V=Cs (1+v0 ) and depends of its max amplitude . • We found a limited development of the first order :v0 =[(øM]3/3. With:ψM =µøM , • we find: µ =(øM)2 ,and :ψM = [øM]3 . • The potential near the ion is equal to:

  7. SOLITON (following) • Ф=(e/4πε0 r).exp(-r/D√2). • ø=(L/r). exp(-r/D√2). • With :L=e2/4πεo kTe :Landau length. • D=( 1/e)[εo kTe /2n]1/2 :Debye screen length • For weak correlations:L<<D that is :ø<<1 . • As d=n-1/3<D , d being the mean distance between two ions ,we have øM for r =d. Then: • øM=(L/d). exp(-d/D√2 ) :potential sheath • ψM =3vO =[L/d). exp(-d/D√2) ]3=Δn/n • The sheath of electrons around each activ ion is near D.

  8. SOLITON (following) • Numerical application • For Te =3.104 K, mi =6.6310-26 kg, Cs = 2500 m/s # V, n=1.61022 /m3 ,Ti=300 K we obtain: • L=5.610-4µm, D=0.067 µm, d=0.04 µm • øM =9.10-3 , Δn=1016/m3, ψM=7.10-7, • ФM=23 mV, µ=8.10-5, vi =(2kTi/ mi)1/2 • vi=324 m/s(mean ion speed)

  9. It is a very small plasma antennaWhen 0.2 <f<100 Khz we measured an electric field : 2 106 <E<3.5 1011 V/m at a distance of 0.4 meter from the confined plasma antenna.The antenna length 2h related to the wavelength is equal to :-in air medium :2hf/c-in the plasma :2hf/CsFor 0.2 <f<100 Khz ,2h=0.45 meters and Cs =2500 m/s we have: 3 10-7 < 2hf/c < 1.5 10-4 in air 0.04 < 2hf/Cs<18 in plasmac/Cs is # the ratio :mass ion/mass electron.

  10. Experimental results • We measured the magnetic induction field with a loop at r0 .We deduced the electric field E ,the magnetic induction field Band the spectral density (u)ffor θ=π/2 : • Z=50 ohms • Zo=377 ohms • P: measured power. R: loop radius . • With R=6 mm, ro= 0.4 m , see the results:

  11. Useful radiations from measurements (θ=π/2) E=3.2 1019 P1/2 / f2 r3 B=2.3 103 P1/2 / f r2 (u)f=8.8 10-4 (1/r2)(dP/df) Pr=2.2 106 P E(V/m), B(T) , (u)f (J.s/m3). P, f ,r , dP/df are measured power (watts), modulation frequency (Hertz),distance (m) spectral width(W/Hz). Pr is the whole radiated power.

  12. Table 1 valid for r=0.4 m.

  13. Generating the whole solitons by one pulse with an ion density: E: electric field deduced at the distance r and θ =π/2. V :volume of the plasma tube. Numerical application with the two parameters P and f : ( Δn)f =(2.91032 /f 2)P1/2. The pressure applied on the internal surface of the plasma tube is : Wr=(1/2)mi.(vi)2(Δn)fwith: vi=(2kTi/mi)1/2=324 m/s, V=0.17 liters,2h=0.45m

  14. Tube internal parameters Table 2. (Δn)fis per m3 , Wr in Pascals , Ns= (Δn)f/Δn=2.9 1016 P1/2/ f2 is the soliton number.

More Related