410 likes | 690 Views
2011-2012. Behavioral economics Economie comportementale. Claudia Senik Université Paris-4 Sorbonne Paris School of Economics senik@pse.ens.fr . Plan. I. Anomalies dans les choix I.1. en environnement certain I.2. en environnement incertain II. Anomalies dans les jugements
E N D
2011-2012 Behavioral economicsEconomie comportementale Claudia Senik Université Paris-4 Sorbonne Paris School of Economics senik@pse.ens.fr
Plan • I. Anomalies dans les choix • I.1. en environnement certain • I.2. en environnement incertain • II. Anomalies dans les jugements • III. Incertitude intra-individuelle et choix inter-temporels • IV. Nudge • V. Interactions sociales • VI. Application aux marchés financiers
Autres biais cognitifs et anomalies dans les jugements • Attention test de Daniel Simons and Christopher Chabris (nest slide) • http://www.youtube.com/watch?v=vJG698U2Mvo • 2 modes de pensées (Thaler et Sunstein): • Intuitif, automatique: système automatique (système 1), cerveau primitif • Reflexif, rationnel: système réflectif (système 2),
Prononcez à voix haute la couleur de ce qui est écrit sur l’écran le plus rapidement possible: JAUNE JAUNE VERT VERT ROUGE BLEU ROUGE
Dan Ariely (Duke University) • http://danariely.com/circle-visual-illusion/ • http://danariely.com/table-visual-illusion/ • http://danariely.com/jastrow-visual-illusion/ • http://danariely.com/cube-visual-illusion/ • http://danariely.com/koffka-ring-visual-illusion/
Exemple the cognitive reflexion test (Frederick Shane, 2005) • Une raquette et une balle coûtent 1,10 € en tout. La raquette coûte 1€ de plus que la balle. Combien coûte la balle? • 10 machines fabriquent 10 objets en 10 minutes. Combien faut-il de temps pour fabriquer 100 objets avec 100 machines? • Dans un lac, il y a un ensemble de nénuphars. Chaque jour, les nénuphars doublent de taille. Il leur faut 48 jours pour couvrir l’étang entier. Combien leur faut-ils de jours pour couvrir la moitié du lac? • Debilimètre sur iPhone
Humans and Econs (Thaler and Sustein) • Homo oeconomicus: capable d’opérer des choix rationnels, préférences cohérentes grande capacité cognitive et calculatoire, prévisions non biaisées • choix optimaux reflètent préférences • Humains: ont du mal à faire du calcul mental, oublient les anniversaires, ne peuvent se retenir de prendre un dessert à la fin du repas… • https://danariely.qualtrics.com/SE/?SID=SV_06eCOQuSG2a4DhW • 20% des Américains sont considérés comme obèses, 60 en sur-poids • Risques cardiaques, diabète, espérance de vie réduite … • Choix rationnel de tous ces Américains? • Même raisonnement pour les comportements à risque • Consommation d’alcool, drogues, cigarettes • Difficultés de self-control, recours à des tiers pour essayer d’arrêter
Heuristiques(Kahneman et Tversky) • Tom Parker: Rules of thumb (collection de règles usuelles) • Mais peuvent conduire à des erreurs. Exemple: anchoring, availability, representativeness biais cognitifs.
Anchoring • Anchoring: ancres non pertinente • Thaler et Sustein • Prenez les 3 derniers chiffres de votre numéro de téléphone et ajoutez 200. Ecrivez ce nombre. • Quand Attila et les Huns ont-ils envahi l’Europe? • Influence du numéro écrit • Collecte de dons pour œuvres de charité • Choix discrets entre 100€, 250€, 1000€, 5000€ ou 50€, 75€, 100€ et 150€ • Les gens donnent plus dans le premier type de choix • Négociations • Partir de haut. Plus on commence avec un prix élevé, plus on obtient un prix élevé.
Anomalies - suite • Availability and salience • Les gens évaluent les risques de tempête, de tremblement de terre ou d’attaque terroriste en fonction des exemples récents. • Achat d’assurances après réalisation de risques rares (inondations…) • Évaluation des perspectives des actions en fonction de leur performance récente • Representativeness • Raisonnement par identification, par similarité. Stéréotypes. • Mais similarité et fréquence peuvent diverger. • Linda (voir exemple plus loin)
Self-defeating choices (Baumeister in Brocas et Carillo, 2003) • Emotional distress problèmes d’évaluation des choix alternatifs • Les gens se mettent à choisir des stratégies plus risquées, même quand les chances de gagner sont faibles • Atteintes à l’estime de soi et à l’identité commune (rejet du groupe) • Essai de restaurer leur image, de manière irrationnelle • Decision-fatigue (trop de choix) • Echec de l’auto-régulation en situation de stress • Interprétation: ressources décisionnelles, calculatoires limitées + conflit entre raisonnement et système émotionnel/affectif
Limitations cognitives, rationalité limitéeSearch and experiments (Camerer, p 670) • Choix complexes et search avec choix multi-dimensionnels • Jane vient d’obtenir un nouveau job. Choix entre 3 bureaux. Optimal: visiter les 3, évaluer leurs différents aspects (clarté, proximité/ couloir, voisins, vue, taille) et pondérer l’importance de chaque aspect « mettre une note synthétique » • Compensatory strategy (aspects=substituts) • Recherche de logement pour Jane qui vient d’obtenir un job dans un nouvelle ville • Jane ne peut pas suivre la même stratégie (visiter tous les logements) • « elimination by aspect » (Tversky): • Choisir un aspect (cf Soros) • définir un seuil minimal, • éliminer tout ce qui n’atteint pas le seuil. • Répéter la procédures pour tous les aspects • => réduire l’ensemble des choix et faire une évaluation compensatoire des « finalistes » • Stratégie qui ne conduit pas nécessairement à l’optimum • Plus les choix sont nombreux et complexes, plus les gens ont recours à des stratégies simplificatrices
Heard behavior (comportement grégaire) • Imitation, influence, modes • 2 types d’explication: recherche d’information et peer pressure (influence des pairs) • Restaurant, bourse, nutrition • Solomon Asch (1995), psychologue. Conformity experiment: • On montre un segment, dire lequel parmi 3 autres est de longueur égale. • Exercice très facile: personne ne se trompe quand fait l’exercice seul. • Traitement: exercice en groupe avec une majorité qui donne une réponse fausse: ¾ des sujets s’aligne sur la réponse fausse. • Réplication dans différents pays: Zaire, Allemagne, France, Japon, Norvège, Liban, Kowait: les gens s’alignent sur les erreurs entre 20% et 40% des cas. • Les gens se conforment plus quand ils savent qu’ils sont observés par les autres.
Herd behavior - suite • Expérience de Muzafer Sherif (1937):sujets placés dans une pièce sombre. Petite lumière rouge placée à une certaine distance. Immobile mais semble bouger (effet auto-cinétique). On demande aux sujets de quelle distance la lumière s’est déplacée. • Interrogés individuellement: pas de corrélation entre leurs réponses. Mais interrogés en groupe et publiquement: corrélation significative au sein des groupes. • Norme de groupe. Stable dans le temps au sein de chaque groupe (quand expérience est répétée). Tradition • On voit comment des normes, valeurs, croyances différentes peuvent se créer et se perpétuer dans le temps, au sein de groupes, villes, pays, etc. à partir d’une petite déviation initiale. • Culture, traditions arbitraires (port de la cravate) • Variante: dans certains groupes, Sherif introduisait un complice qui donnait sa propre estimation de la distance. • Influence significative sur la moyenne du groupe qui augmente ou diminue par rapport à sa valeur initiale (avant intervention du complice) • caractère manipulable des foules
Herd behavior - suite • Sondage. Quel est le problème le plus grave dans notre pays aujourd’hui? La récession économique, l’école, le terrorisme, la santé mentale, le crime et la corruption. • Interrogés individuellement, 12% des gens choisissent le terrorisme, mais placés devant un consensus de groupe ayant choisi cette réponse, 48% la choisissent aussi. • Sondage: « la liberté d’expression est un privilège plutôt qu’un droit; il est légitime de la suspendre quand la société est menacée ». • Interrogés individuellement: 19% des gens se disent d’accord. Devant 4 personnes qui se disent d’accord, 58% des gens se disent également d’accord. • Conformisme, contagion sociale • Cascade d’imitations parfois inconscientes (prénoms – site internet) • Paniques financières
Herd behavior - suite • Conformisme et recettes fiscales • Expérience dans le Minnesota (Thaler) • Information envoyée aux contribuables • Leurs impôts iraient à certaines biens publics (école, police etc.) • Sanctions appliquées en cas de fraude fiscales • Aide en cas de besoin pour remplir déclaration fiscale • Information selon laquelle 90% des Minnesotiens avaient déjà rempli leur déclaration fiscale. La seule information influente = la dernière • On transgresse davantage la loi lorsque l’on pense que tout le monde le fait. • Pour influencer le comportement des gens: attirer leur attention sur ce que font les autres. • Pour accroître la participation au vote: surtout ne pas parler de l’abstention, mais au contraire du fort taux de participation
Erreurs et biais de jugements et heuristiques • Limitation cognitive et calculatoire des individus dans leur évaluation et leur compréhension des situations économiques. • Notamment les situations d’incertitude. • Problème d’application des lois générales des probabilités et de la règle de Bayes. • Les individus, plutôt que d’appliquer un principe de maximisation d’un objectif, mettent en œuvre des « heuristiques », c’est-à-dire des routines simples.
Erreurs de jugement et heuristiquesLa « loi des petits nombres » • Kahneman et Tversky (1982). Il y a 2 hôpitaux dans la même ville. Dans le plus grand, environ 45 bébés naissent chaque jour, alors que dans le plus petit, environ 15 bébés naissent chaque jour. 50% des bébés sont des garçons, cependant, le pourcentage exact sur une journée est variable: parfois il est supérieur à 50%, parfois inférieur. • Sur une période d’un an, chaque hôpital a enregistré les jours où plus de 60% des bébés nés sont des garçons. Selon vous quel hôpital a enregistré le plus de jours de ce type? Le plus grand [22%], les deux autant [56%] , le plus petit [22%] • La théorie des probabilités devrait conduire les sujets à répondre: le plus petit hôpital - qui a le plus de chance de s’éloigner du pourcentage théorique. • Loi des grands nombres: la distribution de probabilité (le pourcentage) observé converge à l’infini vers la loi de probabilité théorique (le pourcentage théorique)
Erreurs de jugement et heuristiquesLa « loi des petits nombres » • Plus généralement, les individus ont tendance à inférer des généralités à partir d’événements peu fréquents, mais très marquants loi des petits nombres. • Mauvaise perception des séquences aléatoires. • séries temporelles aléatoires subjectives avec autocorrélation négative. • « gamble’s fallacy ». ex. Loto: les paris sur un nombre donné diminuent de moitié dans les jours qui suivent sa sortie. • Les gens corrigent la série pour se rapprocher de la série théorique que l’on obtiendrait avec un grand nombre de tirage (mais le nombre de tirages est faible). • De même, la croyance sur les séries de tirs au basketball « hot hands players » est erronée mais profondément ancrée. En réalité les coups consécutifs réussis et manqués par un même joueur sont indépendants. • Implications économiques: volatilité des marchés boursiers en partie dûe aux réactions excessives des investisseurs aux dernières nouvelles économiques et financières.
Erreurs systématiques d’anticipations • Interacted expectations and the curse of knowledge: • 2 agents, l’un plus informé que l’autre. Difficulté pour le mieux informé de se représenter ce que l’autre sait. • Enseignement, manuels, interactions stratégiques… • Hindsight bias (« je vous l’avais bien dit »): mémoire déformée de ce que l’on savait avant l’expérience • biais dans les procès, évaluation des décisions des dirigeants d’entreprise et politiques • Utiliser ses propres goûts pour inférer ceux des autres • erreurs commerciales (surestimation de la représentativité de ses propres préférences)
Illusion de contrôle • Individus agissent souvent comme si des événements qui sont purement aléatoires dépendaient de leur effort ou intelligence. • manière de jeter les dés, de parier sur certains nombres… • Pensée magique, superstition? • On a observé que ce biais était un signe de santé mentale • les individus les moins sujets à l’illusion de contrôle sont plus dépressifs que les autres (see Camerer) • Peut être efficace de surestimer le résultat de son effort: modèles d’effort à plusieurs équilibres • Mais aussi sur-sanction des travailleurs lorsque le résultat de leur travail dépend moins d’eux qu’on ne le pense.
Biais de jugements et heuristiquesLa règle de Bayes • Règle de Bayes: révision des probabilités lorsque l’individu reçoit des informations nouvelles (rationalité). En incorporant ces informations dans son évaluation, il passe des probabilités a priori aux probabilités a posteriori. Selon cette règle, la probabilité attribuée à l’événement X, conditionnellement à l’observation de M, est calculée comme suit: • p(X|M)=p(M|X).p(X) / p(M) • p(X) est la probabilité de réalisation de X • p(M) est la probabilité de réalisation de M • où p(X|M) est la probabilité de X conditionnellement à l’observation de M de X • p(M|X) est la probabilité de M conditionnellement à la réalisation de X.
La règle de Bayes (Kahneman et Tversky, 1972) • Un taxi est impliqué dans un carambolage de nuit. Deux compagnies de taxi, les Verts et les Bleus, opèrent en ville. On vous donne les données suivantes: • 85% des taxis en ville sont Verts et 15% sont bleus • Un témoin a identifié le taxi responsable comme bleu • Le tribunal a observé que les témoins identifient correctement les couleurs dans 80% des cas et se trompent dans 20% des cas. • Quelle est la probabilité pour que le taxi impliqué dans l’accident soit un Bleu? • Réponse médiane=80%. Donc les sujets pensent que le jugement du témoin est représentatif de la couleur du taxi. • Cela les conduit à confondre p(identifier Bleu|Bleu)=0,8 (vrai d’après tribunal) et probabilité demandée: p(Bleu|identifier Bleu)
Règle de Bayes • Selon la rège de Bayes: • p(Bleu | id Bleu)=p(id Bleu|Bleu).p(Bleu) / [P(id Bleu|Bleu).p(Bleu) + p(id Bleu|Vert).p(Vert) ] = (0,8 * 0,15) / [ (0,8 * 0,15) + (0,2 * 0,85) ] = 0,41 • Le décalage tient au fait que la règle de Bayes prend en compte la probabilité a priori que le taxi soit bleu p(Bleu)=0,15, alors que la plupart des sujets ignorent cette grandeur ainsi que les probabilités a priori. • Tendance à la sous-estimation des probabilités a priori confirmée par d’autres études expérimentales. • De plus, l’apprentissage de la règle de Bayes par les sujets est lent.
Illusion monétaire Shafir et al. (1997). Questions hypothétiques posées à des passants et étudiants • Deux jeunes filles, Anne et Barbara, sont diplômées de la même université, mais à une année d’intervalle. Après leur diplôme, elles ont trouvé un travail similaire dans des entreprises d’édition. • Anne a démarré avec un salaire annuel de 30 000 €. Durant sa première année de travail, il n’y a pas eu d’inflation. Pour sa seconde année, Anne a obtenu une augmentation de salaire de 2% (600€). • Barbara a également démarré avec un salaire annuel de 30 000 . Durant sa première année de travail, il y a eu une inflation de 4%. Pour sa seconde année, Barbara a obtenu une augmentation de salaire de 5% (1500 €). • Question: lorsqu’elle ont démarré leur 2è année de travail, laquelle des jeunes filles était le plus avantagée? • La majorité des sujets (64%) répond Barbara. Alors que c’est Anne qui a eu l’augmentation de salaire réel la plus élevée (2% contre 1%). • Illusion nominale: confusion entre valeur nominale et valeur réelle (pouvoir d’achat).
Overconfidence (excès de confiance en soi, excès d’optimisme) • Une bonne évaluation des probabilités devrait reproduire ou prédire la réalité. • Courbe de calibration = relation entre probabilité prédite et proportion réalisée (exemple: pluviométrie) • Calibration = proximité des points du graphique / diagonale. • Résolution (discrimination)= degré auquel les probabilité permettent de distinguer entre les événements probables et non-probables. Une prévision à haute résolution met des poids plus proches de 0 et 1 sur un grand nombre d’événements (et pas un grand nombre d’événements estimés à 50%. • La recherche montre que les individus sont sur-confiant (overconfident) et sous-estiment l’ampleur des intervalles de confiance.
Overconfidence (Thaler et Sustein) • Thaler et Sustein: MBA students. • Question: Dans quel décile pensez-vous tomber en matière de notes à la fin de ce semestre? (10% plus élevé, etc.) • Résultat: moins de 5% de la classe pense être dans les 50% les plus faibles. Plus de 50% de la classe pense être dans les 20% les plus élevés. Le groupe le plus nombreux se place dans le 2è décile. • 90% des automobilistes pensent conduire mieux que la moyenne. • Les gens sont particulièrement optimistes dans les enjeux sont importants • 50% des mariages finissent en divorce, mais la plupart des couples qui se marient pensent que ce ne sera pas leur cas (absence de précaution dans les contrats de mariage, etc.) • Taux de faillite très élevé des nouvelles PME, mais enquête: • Quel sont les chances de succès pour une entreprise comme la vôtre? (50%) • Quelle est la probabilité que vous réussissiez? (90%)
Conséquence de l’excès d’optimisme • Sous-investissement en assurance et contrats flexibles. • Conséquences sur les marchés fonciers, types d’emprunts bancaires, investissements en technologies flexibles, assurances, retraites, mariage et divorce, etc. • Sous-estimation des risques (des variations possibles): explique peut-être le grand nombre de faillites des PME pour problèmes de trésorerie (cash-flow) • Optimisme irréaliste prise de risque excessive • Protection insuffisante contre MST même pour ceux qui connaissent les statistiques • Les gens jouent au loto car ils surestiment énormément leurs chances de gagner • Optimisme irréaliste peut être atténué par rappel des risques réels
Biais de jugements dus au language(Information implicite linguistique)Tversky et Kahneman 1983: « The Linda problem » • Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations. • Please rank the following statements by their probability: • Linda is a teacher in an elementary school • Linda works in a bookstore and takes Yoga classes • Linda is active in the feminist movement (F) • Linda is a psychiatric social worker • Linda is a member of the League of Women Voters • Linda is a bank teller (T) • Linda is an insurance salesperson • Linda is a bank teller and is active in the feminist movement (F&T)
Linda - suite • Théorie: (F&T) est moins probable que F ou T • car proba(F&T)=p(F)*p(T) et les p(.)<1 • Résultats de l’expérience: • 90% des sujets classent F&T comme plus probable que l’un des deux évenements F et (surtout) T. • Explication: F&T est plus « représentatif » de la description de Linda. Confusion entre représentatitivé et probabilité.
Biais de confirmation (Confirmation bias)Peut faire obstacle à l’apprentissage • Watson (1968) • On vous montre 4 cartes portant chacun un inscription: K, E, 4, 7 • Chaque carte porte un chiffre sur un côté et une lettre sur l’autre côté • On vous donne la règle suivante: chaque carte portant une voyelle d’un côté porte un nombre pair de l’autre côté • Quelles cartes devez-vous retourner pour savoir si la règle est vraie ou fausse? • Théorie: E et 7 • Réponses expérimentales: peu de sujets retournent la carte 7. • Interprétation: • pour vérifier une idée, les gens cherchent à confirmer leurs croyances plutôt que de chercher à les infirmer. (ex: retourner uniquement la carte 4 ne peut pas révéler si la règle est toujours vraie) • Prédictions auto-réalisatrices. • Croyances action production de faits conformes à la prédiction (série biaisée) renforcement de la croyance. Cf paniques financières, bulles spéculatives.
Conclusion sur les erreurs de jugements • Règles heuristiques biaisées utilisées par les agents: • Effet de mémoire et de similarité pour juger des proba et des corrélations • Confiance excessive (overconfidence) • Anticipations adaptatives (reflètent observations passées) plutôt que rationnelles • Anticipations itérées (entre agents) biaisées par connaissance personnelles • Surestimation de leur pouvoir de contrôle par les individus • Les expériences de marché montrent que les marchés réduisent les erreurs mais ne les éliminent pas complètement.
Choix versus jugement: invariance procédurale? • Les économistes assimilent choix et jugements: invariance procédurale. • Les préférences sont indépendantes de la manière dont elles sont révélées. • Or certaines expériences montrent le contraire: les préférences peuvent être renversées lorsqu’on demande aux sujets de choisir puis d’évaluer une loterie. • Renversement des préférences.
Le renversement des préférences: expérience de Lichtenstein et Slovic (1971)et Grether et Plott (1979) • On vous donne 7 $ au début de l’expérience. • Décision 1. Vous devez choisir entre 2 loteries. Jouer à une loterie consiste à tirer au sort une boule dans une urne contenant 36 boules numérotées de 1 à 36. Le numéro de la boule tirée au sort déterminera si vous avez perdu ou gagné de l’argent. Vous pouvez jouer à l’une des 2 loteries suivantes: • Loterie A: vous perdez 1$ si la boule numéro 1 est tirée, et vous gagnez 4 si vous tirez une boule portant un autre numéro. • Loterie B: vous perdez 1,5$ si vous tirez une boule dont le numéro est inférieur ou égal à 25, et vous gagnez 16$ si le numéro de la boule est supérieur à 25. • A quelle loterie préférez-vous jouer? • Décision 2. on vous donne un ticket pour chacune des loteries précédentes. Vous pouvez soit jouer à la loterie, soit vendre votre ticket. • Quel est le prix minimum PA auquel vous acceptez de vendre votre ticket pour la loterie A? • Quel est le prix minimum PB auquel vous acceptez de vendre votre ticket pour la loterie B?
Le renversement des préférences- suite • La plupart des gens choisissent la loterie A mais exigent un prix supérieur pour la loterie B. • Or, si l’on accepte l’hypothèse selon laquelle l’individu est indifférent entre la loterie et son prix de vente minimum, on est obligé d’admettre un renversement de préférences entre la situation de choix entre les loteries A et B et la situation d’évaluation de ces mêmes loteries (les options ne sont pas classées de la même manière selon qu’il s’agit de les choisir ou de les vendre). • Expérience menée un grand nombre de fois, par psychologues et économistes, en modifiant les enjeux, avec rémunérations hypothétiques et réelles l’effet de renversement des préférences semble robuste. • Mais moins robuste avec des objets réels (voitures d’occasion à la valeur incertaine) ou avec joueurs expérimentés.
Le renversement des préférences- suite • Interprétation (Lommes et Sugden, 1983): « théorie du regret » • les gens évaluent leurs options non pas isolément, en référence à un système de préférences invariants et préexistant, mais relativement aux autres options présentes au moment du choix. • Lorsqu’un individu évalue deux options, il tient compte pour chacune du manque à gagner par rapport à l’autre (coût d’opportunité). Il anticipe l’intensité de son « regret » d’avoir choisi une option plutôt qu’un autre. • On comprend pourquoi un individu peut préférer jouer à la loterie A mais vendre plus cher la loterie B qui lui procure potentiellement un plus grand regret (en cas de gain de son acheteur). • Quelle que soit l’interprétation, le phénomène de renversement des préférences invalide la propriété d’invariance procédurale.
Renversement de préférences - suite • Implications du renversement de préférences: • Choix entre des lots de biens (commodity bundles) dépendra du bien qui est choisi comme numéraire (référence) • Négociations sur des paquets de droits ou des ensembles de conditions: dépendront du bien utilisé pour faire l’ajustement.
Descriptive invarianceMcNeil, Pauker et Tversky (1988) • On donne à des médecins des tables de survie et de mortalité correspondant à 2 traitements du cancer du poumon. • Formulation différente de la même information statistique. • Framing effect • Tableau p653 Camerer (prochain slide)
Tableau p 653 Camerer (Individual decision-making) • Résultats: • Parmi ceux qui reçoivent la formulation en termes de survie:16 à 20% choisissent la radiothérapie. • Parmi ceux qui reçoivent la formulation en terme de mortalité, 50% choisissent la radiothérapie. • Ceux qui reçoivent les 2 tables: choisissent la radiothérapie à 40%