220 likes | 349 Views
Techniques for CBIR. 03/10/16 陳慶鋒. Outline. Iteration-free clustering algorithm for nonstationary image database Simulation result Possible research domain References. Iteration-free clustering. Nonstationary image database feature-based indexing method
E N D
Techniques for CBIR 03/10/16 陳慶鋒
Outline • Iteration-free clustering algorithm for nonstationary image database • Simulation result • Possible research domain • References
Iteration-free clustering • Nonstationary image database feature-based indexing method ex:histogram,ccv… indexing structures ex:binary tree, R-tree…. images may be added or deleted from the database
Iteration-free clustering (cont.) • K-mean clustering optimal clustering, but time consuming • Iteration-free clustering sub-optimal clustering, but more efficient
Iteration-free clustering (cont.) • Algorithm a. Generating separating hyperplane b. Updating separating hyperplanes using IFC algorithm
Iteration-free clustering (cont.) • Generating separating hyperplane: initial hyperplane: generated by k-mean algorithm
Iteration-free clustering (cont.) • 2-D feature space
Iteration-free clustering (cont.) • Algorithm a. Generating separating hyperplane b. Updating separating hyperplanes using IFC algorithm
Iteration-free clustering (cont.) • Updating separating hyperplanes using IFC algorithm 1) Translation of hyperplanes 2) Rotation of hyperplanes
Iteration-free clustering (cont.) • Translation of hyperplanes first partitions the new-coming feature vectors according to original hyperplane
Iteration-free clustering (cont.) • Translation of hyperplanes(cont.) The database’s midvector becomes m’ instead of m.
Iteration-free clustering (cont.) • The suboptimal midvector m’ outperforms the midvector of KMIO
Iteration-free clustering (cont.) • Rotation of hyperplanes To obtain the rotation of the new hyperplane H’, the best representative line segment must be found first. Distance of x and :
Iteration-free clustering (cont.) • Rotation of hyperplanes(cont.) is estimated according to the four vectors ,rather than by reapplying K-mean algorithm to determine new representative feature vectors. the cost function F:
Iteration-free clustering (cont.) • Rotation of hyperplanes(cont.) The best representative line segment must have minimum cost and pass through the new midvector m’. Thus, the Lagragian function L is:
Possible Research Domain • New feature vectors for CBIR • New indexing structure for image database
References [2]Chia H. Yeh, Chung J. Kuo, “Iteration-free clustering algorithm for nonstationary image database,” Multimedia, IEEE Transaction on, vol. 5, no. 2, JUNE 2003, pp. 223-236