290 likes | 304 Views
This paper presents a low power time-to-digital converter (TDC) for pixelated detectors, achieving a timing precision of 6.9 ps RMS. The TDC utilizes a Vernier architecture and features low area and power consumption, making it suitable for high-performance detectors. Ongoing work includes adding feedback and calibration for further improvement.
E N D
Low Area and Low Power Time-to-Digital Converter for Pixelated Detector with 6.9 ps RMS Timing Jitter Nicolas Roy Frédéric Nolet, Frédérik Dubois, Réjean Fontaine, Jean-François Pratte FEE 2018 May 21st
Towards Time-of-Flight in LabPETPreclinical Scanners 20xx Time-of-Flight (TOF) PET scanner 2017 - Spatial resolution < 1 mm - Modular architecture 2005 1st APD-based commercial PET scanner 1995 1stAPD-basedPET scanner (prototype) Requiresps timing precision BGO scanner, Université de Sherbrooke LabPET I, Université de Sherbrooke LabPET TOF, Université de Sherbrooke LabPET II, Université de Sherbrooke Nicolas.Roy6@USherbrooke.ca
How to Achieveps Timing Precision? • SPAD-to-SPAD skew • (tens of ps) • 1 timestamp/array • Large output capacitance • Not suitable for < 10 ps SPTR (single photon timing resolution) Analog SiPM Nicolas.Roy6@USherbrooke.ca
How to Achieveps Timing Precision? Our approach • SPAD-to-SPAD skew • 1 timestamp/array • Large output capacitance • Not suitable for < 10 psSPTR (single photon timing resolution) SPAD Digital SiPM Nicolas.Roy6@USherbrooke.ca
How to Achieveps Timing Precision? 3D Integration • Maximize photosensitive area • Heterogeneous technologies Integration Optoelectronics TSMC CMOS 65 nm 50 µm 50 µm Nicolas.Roy6@USherbrooke.ca
How to Achieveps Timing Precision? TDC Requirements • Low area • Low power consumption • High timing performance TDC 50 µm 50 µm Nicolas.Roy6@USherbrooke.ca
Implemented Vernier TDC Nicolas.Roy6@USherbrooke.ca
Implemented Vernier TDC Nicolas.Roy6@USherbrooke.ca
Vernier TDC PrelogicDiagram Controls the state ON/OFF of the oscillators Nicolas.Roy6@USherbrooke.ca
Coincidence Arbiter Nicolas.Roy6@USherbrooke.ca
Oscillators • AdjustedwithexternalDACs • Lowjitteroscillators= lowjitter TDC • TDC jittermostlydominatedby the number of vernier cycles (nvernier) where Nicolas.Roy6@USherbrooke.ca
TDC Layout TDC area 25 × 50 µm2 Nicolas.Roy6@USherbrooke.ca
Data Acquisition System ASIC interface PCB Data acquisition PCB TSMC CMOS 65 nm Nicolas.Roy6@USherbrooke.ca
Timing JitterVS TDC Codes • 7 coarses @ 430 ps/coarse • Vernier cycles from 1 to 29 Coarsecycles 6 7 29 4 5 3 2 1 Vernier cycles 1 Overall TDC jitter : 6.9 psrms Nicolas.Roy6@USherbrooke.ca
Timing JitterVS TDC Resolution 6.9 psrms Nicolas.Roy6@USherbrooke.ca
Supply Voltage and TemperatureSensitivity Slow OscillatorPeriod • ~0.7 ps/°C • ~0.5 ps/mV LSB Varies from~11 % over the supply and temperature variations Will needfeedback + calibration! Nicolas.Roy6@USherbrooke.ca
Linearity INL 0.39 LSB rms 0.83 LSB max DNL 0.08 LSB rms 0.47 LSB max * LSB = 15 ps Nicolas.Roy6@USherbrooke.ca
Power Consumption: A System Perspective LabPET II rabbit scanner LabPET II rabbit scanner 50 000 detectors of 1.1 × 1.1 mm2 50 000 detectors of 1.1 × 1.1 mm2 24.2 × 106 SPAD (or TDCs) @ 50 µm pitch 24.2 × 106 SPAD (or TDCs) @ 50 µm pitch 3.9 kW (for TDCs) @ 160 µW/TDC (520W for current detectors in LabPET II) Toomuch!!! Nicolas.Roy6@USherbrooke.ca
Power Consumption: A System Perspective LabPET II rabbit scanner LabPET II rabbit scanner 50 000 detectors of 1.1 × 1.1 mm2 50 000 detectors of 1.1 × 1.1 mm2 24.2 × 106 SPAD (or TDCs) @ 50 µm pitch 24.2 × 106 SPAD (or TDCs) @ 50 µm pitch 968 W (for TDCs) @ 40 µW/TDC (520 W for current detectors in LabPET II) Expected (simulations) Better Nicolas.Roy6@USherbrooke.ca
TDC Comparison FOM = pJ/event Nicolas.Roy6@USherbrooke.ca
Conclusion How to Achieveps Timing Precision? Small Area (0.0013 mm2) LowPower (40 µW expected) • 1 TDC/SPAD • Good TDC Resolution Vernier TDC (LSB = 15 ps) • Low TDC Jitter(6.9 psrms) • Add feedback + calibration (or less) Ongoingwork http://www.vancitymommyd.com Nicolas.Roy6@USherbrooke.ca
TDC Timing Diagram Nicolas.Roy6@USherbrooke.ca
Prelogic Bloc Diagram Actual Design Low Power Design Nicolas.Roy6@USherbrooke.ca
Coincidence Circuit Timing Diagram Nicolas.Roy6@USherbrooke.ca
Coincidence (correction bit) Fastosc. startsinside the correction zone = correction Fastosc. startsoutside correction zone = no correction Nicolas.Roy6@USherbrooke.ca
Density Codes Nicolas.Roy6@USherbrooke.ca
Power Consumption • Now • Dependent on stop frequency • 160 µW @ 333 MHz stop frequency • NextStep • Avoiding the TDC fromstarting at every stop signal • 40 µWestimatedfrom simulations Nicolas.Roy6@USherbrooke.ca