1 / 13

CS 140 Lecture 10 Sequential Networks: Implementation

CS 140 Lecture 10 Sequential Networks: Implementation. Professor CK Cheng CSE Dept. UC San Diego. Implementation. Format and Tool Procedure Excitation Tables Example. Canonical Form: Mealy and Moore Machines. x(t). y(t). Combinational Logic. CLK. x(t). C2. y(t). x(t). C1. C2.

jada
Download Presentation

CS 140 Lecture 10 Sequential Networks: Implementation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CS 140 Lecture 10Sequential Networks: Implementation Professor CK Cheng CSE Dept. UC San Diego

  2. Implementation • Format and Tool • Procedure • Excitation Tables • Example

  3. Canonical Form: Mealy and Moore Machines x(t) y(t) Combinational Logic CLK x(t) C2 y(t) x(t) C1 C2 y(t) C1 CLK CLK

  4. Canonical Form: Mealy and Moore Machines Mealy Machine: yi(t) = fi(X(t), S(t)) Moore Machine: yi(t) = fi(S(t)) si(t+1) = gi(X(t), S(t)) x(t) x(t) C1 C2 y(t) C1 C2 y(t) CLK CLK s(t) s(t) Moore Machine Mealy Machine

  5. Sequential Network Implementation:Format and Tool Canonical Form: Mealy & Moore machines State Table  Netlist Tool: Excitation Table x(t) C1 C2 y(t) CLK s(t) D(t) = h(x(t), S(t)) y(t) = f(x(t), S(t))

  6. x PS Input Q(t) NS, y Implementation: Procedure Given a state table • State Table => Excitation Table we have NS = Q(t+1) = h(x(t),Q(t)) Output y(t) = f(x(t),Q(t)). We want to express D(t), T(t), S(t), R(t), J(t), K(t) as a funciton of inputs X(t) and current state Q(t). We derive the implementation of D, T, S, R, J, K as combinational logic.

  7. Implementation: Procedure • State Table: y(t) = f(Q(t), x(t)) Q(t+1) = h(x(t),Q(t)) • Excitation Table: • D(t) = eD(Q(t+1), Q(t)); • T(t) = eT(Q(t+1), Q(t)); • S, R, J, K • From 1 & 2, we derive • D(t) = gD(Q(t), x(t))= eD(h(x(t),Q(t)), Q(t)); • T(t) = gT(Q(t), x(t))=eT(h(x(t),Q(t)),Q(t)); • S,R,J,K. • Use K-Map to derive optional combinational logic implementation. • T(t) = gT(Q(t), x(t)) • y(t) = f(Q(t), x(t))

  8. JK 00 0 1 11 1 0 10 1 1 01 0 0 0 1 Q(t+1) Q(t) Q(t+1) NS PS 0 0- -1 1 1- -0 0 1 Q(t) JK Excitation Table State table of a JK flip flop: Excitation table for a JK F-F: If Q(t) is 1, and Q(t+1) is 0, then JK needs to be 0-.

  9. Excitation Tables and State Tables Excitation Tables: State Tables: SR SR Q(t+1) NS SR PS PS 0 0- 01 1 10 -0 00 0 1 01 0 0 10 1 1 11 - - 0 1 0 1 Q(t) Q(t) Q(t+1) T T Q(t+1) NS T PS PS 0 0 1 1 1 0 0 0 1 1 1 0 0 1 0 1 Q(t) Q(t) Q(t+1)

  10. Excitation Tables and State Tables Excitation Tables: State Tables: JK JK Q(t+1) NS JK PS PS 0 0- -1 1 1- -0 00 0 1 01 0 0 10 1 1 11 1 0 0 1 0 1 Q(t) Q(t) Q(t+1) D D Q(t+1) NS D PS PS 0 0 0 1 1 1 0 0 0 1 1 1 0 1 0 1 Q(t) Q(t) Q(t+1)

  11. J Q Q’ K C1 T Implementation: ExampleImplement a JK F-F with a T F-F Q(t+1) = h(J(t),K(t),Q(t)) = J(t)Q(t)+K(t)Q(t) State Table JK JK PS 00 0 1 01 0 0 10 1 1 11 1 0 0 1 Q(t)

  12. Example: Implement a JK flip-flip using a T flip-flop Excitation Table of T flip-Flop T(t) = Q(t) XOR Q(t+1) Q(t+1) NS PS 0 0 1 1 1 0 0 1 Q(t) T Excitation Table of the Design id 0 1 2 3 4 5 6 7 J(t) 0 0 0 0 1 1 1 1 K(t) 0 0 1 1 0 0 1 1 Q(t) 0 1 0 1 0 1 0 1 Q(t+1) 0 1 0 0 1 1 1 0 T(t) 0 0 0 1 1 0 1 1 T(t) = Q(t) XOR ( J(t)Q’(t) + K’(t)Q(t))

  13. Example: Implement a JK flip-flip using a T flip-flop T(J,K,Q): K 0 2 6 4 0 0 1 1 T = K(t)Q(t) + J(t)Q’(t) 1 3 7 5 Q(t) 0 1 1 0 J J Q Q’ T K

More Related