1 / 21

Flux formulation of Double Field Theory

Flux formulation of Double Field Theory. Quantum Gravity in the Southern Cone VI Maresias , September 2013 Carmen Núñez IAFE-CONICET-UBA. Outline. Introduction to Double Field Theory Applications

jadon
Download Presentation

Flux formulation of Double Field Theory

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Flux formulation of DoubleFieldTheory Quantum Gravity in theSouthernCone VI Maresias, September 2013 Carmen Núñez IAFE-CONICET-UBA

  2. Outline • IntroductiontoDoubleFieldTheory • Applications • Flux formulation • Doublegeometry • Open questions and problems • Workwith G. Aldazabal, W. Baron, D. Geissbhuler, D. Marqués, V. Penas

  3. T-duality • Closedstringtheoryon a torusTdexhibitsO(d,d)symmetry • Stringsexperiencegeometry in a ratherdifferentwaytopointparticles. • T-dualityestablishesequivalenceof theoriesformulatedonverydifferentbackgrounds • Isthere a more appropriategeometricallanguagewith whichtounderstandstringtheory ?

  4. DOUBLE FIELD THEORY • DFT isconstructedfromthe idea toincorporatetheproperties of T-dualityinto a fieldtheory • Conservedmomentum and winding quantum numbershaveassociatedcoordinates in Td • Doubleallcoordinates • Everyobject in a dualityinvarianttheorymustbelongtosomerepresentation of thedualitygroup. In particular, xihavetobesupplementedwith XM  fundamental rep. O(D,D) • Raise and lowerindiceswiththe O(D,D) metric • Introduce doubledfields and write withmanifest global O(D,D) symmetry

  5. Fieldcontent • Focusonbosonic universal gravity sectorGij, Bij,  • Fields are encoded in a 2D × 2D GENERALIZED METRIC , O(D,D) INVARIANT GENERALIZED DILATON

  6. ThegeneralizedmetricspacetimeactionHull and Zwiebach (2009)O. Hohm, C. Hull and B. Zwiebach (2010) O(D,D) symmetryismanifest • DFT also has a gauge invariancegeneratedby a pair of parameters • Gauge invariance and closure of the gauge algebra lead to a set of • differentialconstraintsthatrestrictthetheory. In particular, theconstraints • can besolvedenforcing a strongerconditionnamedstrongconstraint

  7. Strongconstraint • Allfields, gauge parametersandproducts of themsatisfy • Itimpliesthereissome dual framewherefields are notdoubled • Stronglyconstrainted DFT displaysthe O(D,D) symmetrybutitis notphysicallydoubled • Gauge invariance and closure of gauge transformationsweakercondition • Certainbackgroundsallowrelaxations of thestrongconstraint, producing a trulydoubledtheory: • Massivetype IIA O. Hohm, S. Kwak (2011) • SuggestedbyScheck-Schwarzcompactifications of DFT G. Aldazabal, W. Baron, D. Marqués, C.N. (2011) D. Geissbhuler (2011) • Sufficientbutnotnecessaryfor gauge invariance and closure of gauge algebra M. Graña, D. Marqués (2012) • Explicitdoublesolutionsfound in D. Geissbhuler, D. Marqués, C.N., V. Penas (2013)

  8. Applications of DFT • DFT has been a powerfultoolto explore stringtheoreticalfeaturesbeyondsupergravity and Riemaniangeometry • Somerecentdevelopmentsinclude: • Geometricinterpretation of non-geometricgaugings in flux compactifications of stringtheoryG. Aldazabal, W. Baron, D. Marqués, C.N. (2011) D. Geissbhuler (2011) • Identification of new geometricstructures D. Andriot, R. Blumenhagen, O. Hohm, M. Larfors, D. Lust, P. Patalong (2011, 2012) • Description of exoticbraneorbitsF. Hassler, D., Lust (2013) J.de Boer, M. Shigemori (2010, 2012), T. Kikuchi, T. Okada, Y. Sakatani (2012) • Non-commutative/non-associativestructures in closedstringtheory R. Blumenhagen, E. Plauschinn, D. Andriot, C. Condeescu, C. Floriakis, M. Larfors, D. Lust , P. Patalong (2010-2012) • New perspectiveson‘ corrections, O. Hohm, W. Siegel, B. Zwiebach (2012,2013) • New possibilitiesforupliftings, modulifixing and dS vacua, Roest et al. (2012)

  9. Application I: Missinggaugings in geometriccompactifications(seeAldazabal’stalk) 10D stringsugra SS reduction ontwisted T6 4D gaugedsugraT-duality4D gaugedsugra geometricfluxesin d-dimall dual (geometric & abc & Habc non- geometric) gaugings Modulifixing & dS vacua T-duality in D-dim Double Field Theory SS reduction on twisted T6,6 ???

  10. Application II: New geometricstructuresNon geometry, GeneralizedGeometry • Diffeomorphisms of GR and gauge transformations of 2-form are combined in generalizeddiffeomorphisms and Lie derivatives ; New termneeded so that • Gauge transformations Theaction of thegeneralizedmetricformulationis gauge invariantbecauseR(H,d)is a generalizedscalarunderthestrongconstraint

  11. DFT vs GeneralizedGeometry • Thedoublegeometryunderlying DFT differsfromordinarygeometry. • DFT is a smalldeparturefromGeneralizedGeometry(Hitchin, 2003; Gualtieri, 2004) • Given a manifold M, GG putstogethervectors Vi and one-formsi as V +   TM T*M . Structuresonthislargerspace TheCourantbracketgeneralizesthe Lie bracket V and  are nottreatedsymmetrically • DFT puts TM and T*M on similar footingbydoublingtheunderlyingmanifold. Gauge parameters and thenC-bracket For non-doubled Mthe C-bracket reduces totheCourantbracket

  12. Geometry, connections and curvature • Theactionwastendentiouslywritten as It can beshownthattheaction and EOM of DFT can beobtainedfrom traces and projections of a generalizedRiemann tensor RMNPQ • TheconstructiongoesbeyondRiemanniangeometrybecauseitisbasedongeneralizedratherthanstandard Lie derivatives • Thenotions of connections, torsion and curvaturehavetobegeneralized • E.g.thevanishingtorsion and compatibilityconditions do notcompletely determine theconnections and curvatures, butonlyfixsome of theirprojectionsI. Jeon, K. Lee, J. Park (2011), O. Hohm, B. Zwiebach (2012) • Strongconstraintwasassumed in theseconstructions. Can itberelaxed?

  13. Flux formulation of DFTW. Siegel (1993) D. Geissbhuler, D. Marqués, C.N., V. Penas (2013) • Basic fields are generalizedvielbeins EAM and dilaton • EAM can beparametrized in terms of vielbein of D-dimensional metric D-dimensional Minkowskimetric • Arrangethefields in dynamicalfluxes: • Fielddependent and non-constantfluxes, thatgiverisetogaugingsorconstantfluxesuponcompactification (e.g.Fabc=Habc)

  14. Theaction Theactiontakestheform of theelectric sector of thescalarpotential of N=4 D=4 gaugedsupergravity Vanishesunderstrongconstraint Generalizedmetric DFT actionmodulo onestrongconstraintviolatingterm Thisactiongeneralizesthegeneralizedmetricformulation, includingallterms thatvanishunderthestrongconstraint

  15. Generalizeddiffeomorphisms • Theclosureconstraints (generalized Lie derivativesgenerateclosedtransformations) taketheform: • and they asure that FABC, FAtransform as scalars and S is gauge invariant • Imposingtheseconditionsonlyrequiresa relaxedversionof strong • constraintthetheoryadmitstrulydoublefields • Constraints can beinterpreted as Bianchi identitiesforgeneralized • Riemann tensor

  16. Geometricformulation of DFT • Define covariantderivativeontensors • Determine theconnectionsimposing set of conditions: • Compatibilitywithgeneralizedframe: • Compatibilitywith O(D,D) invariantmetric • Compatibilitywithgeneralizedmetric • Covarianceundergeneralizeddiffeomorphisms: • CovarianceunderdoubleLorentztransformations: Lorentzscalar • Vanishinggeneralizedtorsion: Standard torsion non covariant • Compatibilitywithgeneralizeddilaton Only determine someprojections of theconnections

  17. Generalizedcurvature • ThestandardRiemann tensor in planarindicesisnot a scalarundergeneralizeddiffeomorphisms • It can bemodifiedadding new terms, leadingto • Projectionswithgive and similarly EOM • Bianchi identities

  18. Scherk-Schwarzsolutions • Alltheconstraints can besolvedrestrictingthefields and gauge parameters as where and quadraticconstraints of N=4 gaugedsugra • Fortheseconfigurationsalltheconsistencyconstraints are satisfied. • Thedynamicalfluxesbecome: • Thisansatzcontainsthe usual decompactifiedstrongcontrained case (U=1, =0, xi, i=1,…, D). Itis a particular limit in whichallthe compact dimensions are decompactified.

  19. Conclusions • Presentedformulation of DFT in terms of dynamical and fielddependentfluxes. • The gauge consistencyconstraintstaketheform of quadraticconstraintsforthefluxes, thatadmitsolutionsthatviolatethe SC  allowstogobeyondsupergravity • Computedconnections and curvaturesonthedoublespaceunderassumptionthatcovarianceisachievedupongeneralizedquadraticconstraints, ratherthan SC, which can beinterpreted as BI. • Interestingly, thisproceduregivesrisetoallthe SC-violatingterms in theaction, which are gauge invariant and appearsystematically • This completes the original formulation of DFT, incorporatingthemissingtermsthatallowtomakecontactwithhalf-maximalgaugedsugra, containingalldualityorbits of non-geometricfluxes (FABCFABC).

  20. Open questions • Someelements of the O(D,D) geometryhavebeenunderstood, butitisimportanttobetterunderstandthegeometryunderlying DFT • Can thisconstructionbe extended beyondtori? Calabi-Yau? • ’ corrections. Innerproduct and C-bracket are corrected deformation of Courantbracket and otherstructures in GG • Beyond T-duality? U-duality? • Relationbetween DFT and stringtheory. Isthis a consistenttruncation of stringtheory? No massivestates, butfullyconsistent • Worldsheettheory?

  21. THANK YOU

More Related