1 / 30

n-p pairing in N=Z nuclei

the Wigner energy and the generalized. blocking phenomenon. cranking in isospace - response of t=0 pairing. against rotations in isospace. reality or fiction ?. n-p pairing in N=Z nuclei. Motivation & fingerprints ( basic concepts ): . W. Satuła University of Warsaw.

jalena
Download Presentation

n-p pairing in N=Z nuclei

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. theWigner energy and thegeneralized blockingphenomenon • crankinginisospace - responseof t=0 pairing againstrotationsinisospace reality orfiction? n-ppairinginN=Znuclei Motivation & fingerprints (basicconcepts): W. Satuła University of Warsaw • symmetricnuclearmattercalculations • bindingenergies - mean-fieldcrisisaroundN~Zline • elementaryisobaricexciatationsinN~Znuclei • – a need for isosopinsymmetryrestoration • high-spin signatures of pn-pairing

  2. Neutron - Structure of nucleonic pairs • N=Z  nucleons start to occupy „identical” spatialorbitals • Nuclear interaction favoures L=0 coupling • Pair-structureisgoverned by thePauliprinciple: • Isovector(or1S0) pairs T=1, S=0 - Isoscalar (deuteron-likeor3S1) pairsT=0, S=1 Proton + Tz+1 0 -1 Sz +1 0 -1

  3. 3S1-3D1(coupled)pairing gap insymmetricNuclearMatterfromParis VNN free-spacesp spectrum BHF sp spectrum (in-medium corrections) tensor-force enhancement From M. Baldo et al. Phys. Rev. C52, 975 (1995)

  4. Gapsfromlocaleffectivepairinginteraction DDDI usedinSkyrme-HFBcalculations by Terasaki et al. NPA621 (1997) 706. Isoscalarpairing Tensor force enhancement Cut-off!!! (otherwisedivergent!) ro DDDI: E. Garrido et al. PRC60, 064312 (1999) PRC63, 037304 (2001)

  5. 3S1-3D1(coupled)pairing gap insymmetricNuclearMatterincludingrelativisticcorrections Saturation density Includesrelativisticin-mediumcorrections (splevelsfromDirac-Brueckner-HF) O. Elgaroy, L.Engvik, M.Hjorth-Jensen, E.Osnes, Phys.Rev.C. 57 (1998) R1069

  6. Empirical NN interactioninN~Z • T=1 channel: • J=0coupling dominates • T=0 channel: • J=1 and J=2j aresimilar • T=0 is, on theaverage, strongerthan T=1 by a factor of ~1.3 N.Anantaraman & J.P. Schiffer PL37B (1971) 229 Dufour & Zucker, Phys. Rev. C54, 1641 (1996)

  7. The model: deformedmean-field plus pairing: 0 0 Pairs p-n and p-ñ Pairs: ~ Pairs ñ-n and p-p « usual » ; T=1 ~ Pairs: p-ñ + n-p; T=1 ~ Pairs: p-ñ – n-p ; T=0 Hamiltonian BCS: N.Anantaraman and J.P. Schiffer PL37B (1971) 229

  8. Comparisonwithdelta-forcetowards a localtheory M.Moinester, J.P. Schiffer, W.P. Alford, PR179 (1969) 984

  9. A.L.Goodman Nucl. Phys. A186 (1972) 475 BCStransformation BCS transformationtakesthefollowing form : real complex wherethevariationalparametersare: i 2 Densitymatrix(occupation) and thepairing tensor Generalization:BCSHFB UiU &ViV matrices of dimension 4N

  10. BCS Solution Energy(Routhian) Variational equationinN=Z system (without Coulomb) Occupationprobabilities; quasiparticleenergies: Pairgaps: Gap T=0 aã Gap T=0 aa n-ñ, p-p T=1 n-p + p-ñ ~ ~

  11. X X T=0/T=1 (no)mixing X= / 48Ca • Incompletemixing? • T=1, Tz=+/-1 andTz=0 • T=1, Tz=+/-1andT=0 W.S. &R.Wyss PLB 393 (1997) 1

  12. Energy gain as a functionof T=0/T=1 pairing’smixing „x” Energy gain: DMass =E(T=0+1)- E(T=1) Thomas-Fermi X=1.1 X=1.2 X=1.3 X=1.4 X= / generalizedblockingeffect n-excess blocks pn-pairs scattering Wignerterm from Myers & Swiatecki neutrons protons Satuła & Wyss PLB393 (1997) 1

  13. Wignereffectfromself-consistentSkyrme-HF N=Z Exp. HFBCS T=1 Sph. HFBCS T=1 Def. (SIII) • Defficiency of conventionalself-consistentmodels: HF or HFBincluding standard T=1, |Tz|=1 ~ p-p & n-npairs: • (N-Z)2 ~ T2 termisOK! • no (orveryweak) |N-Z| ~ term |N-Z|=2,4 (black) A.S. Jensen, P.G.Hansen, B.Jonson, Nucl.Phys. A431(1984) 393 o-o e-e

  14. TheWignereffect total 1 2 w / w DE= asymT(T+x) 25 A=48 20 B (MeV) 15 48Cr 10 5 1.0 w 0 0.8 N-Z -4 0 4 0? 1?? 1.25??? exp. inN~Z 4 ???? Wigner SU(4) 0.6 0.4 24Mg 0.2 X= 0.0 0 1 2 3 4 5 6 7 Jmax

  15. Isobaricexcitations inN~Z nuclei 2.0 1.5 1.0 0.5 47/A [MeV] W(A) [MeV] • Thelowest: • T=0, T=1 & T=2 in e-e nuclei • T=0 & T=1 statesin o-o nuclei GT=0 1.4 GT=1 • The model needs to be extended to • includeisospinprojection isospincranking 0.6 strong T=0 pairing limit! A 30 40 J.Janecke,Nucl. Phys. A73 (1965) 73 A. Macchiavelli et al.Phys. Rev.C61(2000) 041303(R) P.Vogel,Nucl. Phys. A662 (2000) 148

  16. Theextremes.p.model: 4-fold degenerated equidistant s.p. spectrum  Energy:  Eigen-states (routhians) are 2-fold (Kramers) degene- rated „stright lines”: Crossings form simple arithmetic serie: „inertia” defined through mean level spacing !!!

  17. T=2 states in e-e nuclei 20 14 28 1 2 DE=deT2 20 15 10 5 0 20 30 40 50 DET=2[MeV] hWS+HT=1 +HT=0-wtx T=2 hWS+HT=1 -wtx iso-cranking A Iso-cranking gives excitation energy which goes like: + Epair vacuum mean level spaceing at the Fermi energy

  18. (iso)Coriolis antipairingeffect iso-MoI Tx 1.5 1.0 48Cr 0.5 0 0 1 2 3 D/e = 0.001 3 6 e=1 iso-moment of inertia 2 1 D/e = 0.5;1.0;1.5 0 3 0.7 DT=0 2 D [MeV] Tz 0.6 DT=1 0 iso-moment of inertia 1 1 0.5 2 3 0 0.4 4 0 1 2 3 hw [MeV] 0.3 hw

  19. T=1 statesine-e N=Znuclei • T=1 states: 2qp+ isocranking

  20. odd-Tsequence Isocranking N=Z odd-oddnuclei T de 5 de de 2de 6de 4de 4 hw even-Tsequence 3 de 2 de 1 de 0 hw de 3de 5de iso-signature selection rule Eeven-T = 1/2deTx2 Eodd-T = 1/2deTx2 - 1/2de

  21. T=0 vs T=1 statesino-o N=Znuclei T=0 T=1 1.0 2qp cranking vacuum 0.5 DET=1 - DET=0 [MeV] 0.0 -0.5 exp th 20 30 40 50 60 70 A

  22. Neutron-proton pairing collectivity (a fit plus three easy steps) (III) ET=1 - ET=0 (even-even) ET=1 - ET=0 (odd-odd) (II) • Wigner energy linked to the n-p pairing collectivity • T=2 states in even-even nuclei obtained from isocranking • T=1 states in even-even nuclei obtained as 2qp excitations • T=1 states in odd-odd nuclei obtained from isocranking • T=0 states in odd-odd nuclei obtained as 2qp excitations Fit of GT=0 /GT=1 ET=2 - ET=0 (even-even) (I) W. Satuła & R. Wyss Phys. Rev. Lett., 86, 4488(2001); Phys. Rev. Lett., 87, 052504(2001)

  23. Schematic isospin-isospin interaction: extreme sp model even-even vacuum de H=hsp- wT+ kTT l 2 de de de de+k 3de 3(de+k) hw + kT E= (de+k)T2 1 1 1 E= (de+k)T2 2 2 2 seee.g. Bohr & Mottelson „NuclearStructure” vol. I Neergard PLB572 (2003) 159 1 mean - • field • (Hartree) HMF=hsp- (w - k T )T iso-cranking with isospin-dependent frequency!!! Hartree Hartree- -Fock

  24. Pairinginfastrotatingnuclei Muller et al., Nucl. Phys. A383 (1982) 233 Resistance of nucleonic paires against fastrotation:

  25. 48Cr ; HFB calculationsincluding T=0 & T=1 pairing -1 d3/2 g9/2 4 4 [nf7/2pf7/2] 16+ J. Terasaki, R. Wyss, and P.H. Heenen PLB437, 1 (1998) • Skyrmeinteractioninp-h • DDDI inp-p channel • fullyself-consistenttheory • no sphericalsymmetry • two-classes of solutions: - T=0 dominatedat I=0 - T=1 dominatedat I=0 isoscalar pairing Non-collective (oblate) rotation no T=0 at low spins Collective (prolate) rotation T=1 collapses (termination) exp

  26. (1) 73Kr – manifestationof (dynamical) T=0 pairing? 3qp 2.5 30 2.0 3qp 1.5 25 1.0 20 0.5 15 0.0 -0.5 10 5 g 40 0.5 0.5 0.5 1.0 1.0 1.0 1.5 1.5 1.5 fp R.Wyss, P.J. Davis, WS, R. Wadsworth Conventional TRS calculations involving only T=1 pairing: negative parity negative parity positive parity Ix (-,-) (+,+) 73Kr 73Kr (-,-) Ew [MeV] 5qp 1qp 1qp 73Kr: Kelsall et al., Phys. Rev. C65 044331 (2005) hw[MeV] hw[MeV] |1qp> = a+n(fp)|0> |3qp> = a+ng a+pg a+p(fp)|0> <1qp|E2|3qp> ~ 0 (one-body operator)

  27. (2) 73Kr – manifestationof (dynamical) T=0 pairing? 1.0 n(fp) p(fp) p(fp) 0.5 pg9/2 pg9/2 ng9/2 0 n(fp) p(fp) p(fp) 30 ng9/2 pg9/2 pg9/2 25 20 15 10 5 0 1.4 0.4 0.8 1.0 1.2 1.6 0.2 0.6 What makes the 1qp and 3qp configurations alike? Scattering of a T=0 np pair TRS involving T=0 and T=1 pairing in 73Kr Dn Dp D [MeV] DT=0 73Kr n(fp)(-) vacuum 1qp configuration Ix n(fp) theory ng9/2 exp n(fp) ng9/2 ng9/2(+) pg9/2 p(fp)(-) 3qp configuration hw [MeV]

  28. 2.0 30 1.5 25 1.0 20 0.5 15 0.0 10 -0.5 5 0.5 1.0 1.5 0.5 0.5 1.0 1.0 1.5 1.5 (3) 73Kr – manifestationof (dynamical) T=0 pairing? Conventional TRS calculations involving only T=1 pairing in neighbouring nuclei: negative parity positive parity all bands Ix (-,+) 75Rb 3qp 75Rb (+,+) Ew [MeV] 1qp 3qp 1qp hw[MeV] hw[MeV] Excellent agreement was obtained in: Tz=1 : 74Kr,76Rb, D. Rudolph et al. Phys. Rev. C56, 98 (1997) Tz=1/2: 75Rb, C. Gross et al. Phys. Rev. C56, R591 (1997) Tz=1/2: 79Y, S.D. Paul et al. Phys. Rev. C58, R3037 (1998)

  29. SUMMARY Part of T=0 correlationsinN~Znucleiisdefinitely beyond standard formulation of mean-field (Wigner energy) Adding T=0 pairinghelps but cannotsolvethe problem of theWigner energy (symmetry energy) inN~Znuclei whichseems to be beyondmean-field Thereis no convincingarguments for coherency of the T=0 phase Theoreticaltreatment of T=1 statesin e-e nuclei and T=0 states o-o nucleirequiresangularmomentum and isospinprojections

  30. (**) (*) sn-1 aw 2as sn-1 x a 4asT(T+x); x=aw/2as 0.153 1.33 0.239 6 1/2 8 0.125 1.27 0.213 11 2/3 14 0.107 1.24 0.196 38 1 47 0.106 1.26 0.196 31 0.95 39 Independent least-square fits of: aw|N-Z|/Aa the Wigner energy strength: as(N-Z)2/Aa the symmetry energy strength: Głowacz, Satuła, Wyss, J. Phys. A19, 33 (2004) very consistent with: Janecke, Nucl. Phys. (1965) 97 Fit includes N~Z nuclei with: Z>10; 1<Tz<3 excluding odd-odd Tz=1 nuclei - - - (*) See: Satuła et al. Phys. Lett. B407 (1997) 103 (**) Based on double-difference formula: J.-Y Zhang et al. Phys. Lett. B227 (1989) 1

More Related