1 / 21

Effects of TLS parameters in Macromolecular Refinement

Effects of TLS parameters in Macromolecular Refinement. Martyn Winn Daresbury Laboratory, U.K. IUCr99 08/08/99. Overview. Background to the use of TLS tensors. Details of TLS refinement. Implementation in REFMAC: examples. Contributions to atomic U.

jamese
Download Presentation

Effects of TLS parameters in Macromolecular Refinement

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Effects of TLS parameters in Macromolecular Refinement • Martyn Winn • Daresbury Laboratory, U.K. • IUCr99 08/08/99

  2. Overview • Background to the use of TLS tensors. • Details of TLS refinement. • Implementation in REFMAC: examples

  3. Contributions to atomic U U = Ucrystal + UTLS + Uinternal + Uatom Ucrystal : overall anisotropic scale factor w.r.t. crystal axes. UTLS : rigid body displacements e.g. of a.s.u., molecules, domains, secondary structure elements, aromatic rings of side groups, etc. Uinternal : internal displacements of molecules, e.g. normal modes of vibration, torsions, etc. Uatom : anisotropy of individual atoms

  4. TLS: small molecules • D.W.J.Cruikshank (1956) - TL analysis • G.S.Pawley (1964, 1966) - TL refinement • V.Schomaker & K.N.Trueblood (1968) - introduction of S in analysis of ADPs • J.D.Dunitz & D.N.J.White (1973) - inclusion of internal torsional motion of “attached rigid group”

  5. TLS: macromolecules • S.R.Holbrook et al (1985) - duplex DNA dodecanucleatide, 1.9Å, 70 groups (phosphate, ribose, base), CORELS • B.Howlin et al (1989) - bovine Ribonuclease A, 1.45Å, RESTRAIN • G.W.Harris et al (1992) - papain, 1.6Å , RESTRAIN • Sali et al (1992) - endothiapepsin complex, 1.8Å, RESTRAIN

  6. Rigid body motion • Linearise general displacement u of atom (mean position r) in rigid body: u = t + D.r  t +  x r • Corresponding dyad: uu = tt + t x r - r x t - r x  x r • Average over dynamic motion and static disorder gives atomic ADP: U  <uu> = T + ST x r - r x S - r x L x r • T,L andS describe mean square translation, libration and their correlation of rigid body.

  7. TLS in refinement • Need to specify TLS groups for molecule of interest. • 6 + 6 + 8 = 20 parameters per group (trace of S is undetermined). • T and S (but not L) origin-dependent. S is symmetric if origin is Centre of Reaction. • Gradients of residual w.r.t. TLS parameters follow from gradients w.r.t. U’s via chain rule.

  8. NCS • REFMAC applies restraints to B and U values of NCS-related molecules. • But different molecules in a.s.u. may have different overall thermal parameters. • Refine independent overall TLS tensors for each molecule before refining restrained individual parameters.

  9. Choice of TLS groups • Choose TLS groups using: • chemical knowledge, e.g. aromatic side groups of amino acids, domains of macromolecules • fit to ADPs of test structure, e.g. Holbrook & Kim (1984) compared 7 rigid body models of CMP and used best as basis for partitioning other nucleic acids. • dynamic domains identified from similar structures, e.g. from apo and holo forms of alcohol dehydrogenase

  10. Implementation in REFMAC • Refine TLS parameters against ML residual, using previously refined atomic coordinates and B factors. • TLS parameters held in TLSIN/TLSOUT files. • Analyse with TLSANL program.  libration axes, etc and ADPs To be implemented: • Allow TLS refinement prior to or simultaneously with refinement of other parameters.

  11. E.g. 1 - GAPDH • Glyceraldehyde-3-phosphate dehydrogenase from Sulfolobus solfataricus (M.N.Isupov et al, JMB, in press) • P41212, 2.0Å, 2 molecules in a.s.u., each molecule has NAD-binding and catalytic domains.

  12. E.g. 1 - GAPDH ScalingBisoTLS groupsR factorRfree Isotropic Refined 0 23.3 29.6 Anisotropic Refined 0 22.6 28.9 Isotropic Refined 1 21.0 26.4 Isotropic Refined 2 20.9 26.2 Isotropic Refined 4 20.8 26.1 Isotropic 35Ų 0 29.5 34.4 Isotropic 35Ų 1 26.6 32.1 Isotropic 35Ų 2 24.2 29.0 Isotropic 35Ų 4 23.8 28.4

  13. E.g.1: axes of libration Refined Bs. Blue - chain O, NAD-binding domain Red - chain O, catalytic domain Green - chain Q, NAD-binding domain Yellow - chain Q, catalytic domain

  14. E.g.1: axes of libration Constant Bs. Blue - chain O, NAD-binding domain Red - chain O, catalytic domain Green - chain Q, NAD-binding domain Yellow - chain Q, catalytic domain

  15. E.g.2: ADH • horse liver alcohol dehydrogenase (S.Ramaswamy et al). • apo form: C2221, 2.0Å, single chain in a.s.u. • DYNDOM results from apo vs. holo forms. ScalingBisoTLS groupsR factorRfree Isotropic Refined 0 27.9 32.5 Anisotropic Refined 0 23.6 29.1 Isotropic Refined 1 22.5 27.4 Isotropic Refined 4 22.3 27.4 Isotropic Refined 6 22.2 27.6

  16. E.g.2: dynamic domains Results from DYNDOM. Blue - first domain Red - second domain Green - hinge region

  17. E.g.2: axes of libration TLS groups: Blue - first dynamic domain Red - second dynamic domain Green - hinge region Yellow - flexible loop

  18. E.g. 3: lysozyme complex • Hen egg white lysozyme complexed withcamelid single-chain antibody (K. Decanniere et al). • C2, 2.1Å, single copy in a.s.u. ScalingBisoTLS groupsR factorRfree Isotropic Refined 0 20.2 24.3 Anisotropic Refined 0 20.0 24.0 Isotropic Refined 4 19.9 23.7 Isotropic Refined 4* 19.9 23.7

  19. E.g.3: axes of libration Simple minimisation. Blue - antibody Red - CRD3 loop of antibody Green - lysozyme Yellow - lysozyme

  20. E.g.3: axes of libration Minimisation with TLS constrained to be positive semi-definite Blue - antibody Red - CRD3 loop of antibody Green - lysozyme Yellow - lysozyme

  21. Acknowledgements • CCP4 • BBSRC • Garib Murshudov (REFMAC) • Misha Isupov (GAPDH) • S Ramaswamy (ADH) • Klaas Decanniere (lysozyme complex)

More Related