480 likes | 640 Views
Magnetism in Herbig Ae/Be stars and the link to the Ap/Bp stars. E. Alecian, C. Catala, G.A. Wade, C. Folsom, J. Grunhut, J.-F. Donati, P. Petit, S. Bagnulo, S.C. Marsden, J.D. Landstreet, T. Böhm, J.-C. Bouret, J. Silvester. CNRS Summer school La Rochelle, 24 - 28 September 2007. Plan.
E N D
Magnetism in Herbig Ae/Be stars and the link to the Ap/Bp stars E. Alecian, C. Catala, G.A. Wade, C. Folsom, J. Grunhut, J.-F. Donati, P. Petit, S. Bagnulo, S.C. Marsden, J.D. Landstreet, T. Böhm, J.-C. Bouret, J. Silvester CNRS Summer school La Rochelle, 24 - 28 September 2007
Plan • Introduction • Field Herbig Ae/Be stars study : magnetism • Field Herbig Ae/Be stars study : rotation • Cluster study • Conclusion and Open Issues CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
A/B stars The intermediate mass stars (1) HAEBE • Pre-main sequence (PMS): from birthline to ZAMS • Herbig Ae/Be stars (HAEBE) • Main sequence (MS): around the ZAMS • A/B stars CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
The intermediate mass stars (2) Convective envelope disappearing • HAEBE stars: • radiative inside + convective envelope, or • convective core + radiative envelope, or • totally radiative • A/B stars • convective core + radiative envelope Convective core apparition CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
The chemically peculiar stars • Ap/Bp : ~5% of A/B stars • Abundances anomalies compared to normal A/B stars • Slow rotators • Ap/Bp: Magnetic stars : 300G to 30kG, large scale organised magnetic field : mostly dipole+quadrupole CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Problematic 1 • Origin of the magnetic fields in the Ap/Bp stars • Favoured hypothesis : the fossil field hypothesis • some of the intermediate mass PMS star should be magnetic • topology of B(PMS A/B) = topology B(Ap/Bp) • intensity B(PMS A/B) compatible with intensity B(Ap/Bp) (assuming the magnetic flux conservation) • The core dynamo hypothesis CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Problematic 2 • Origin of the slow rotation of the Ap/Bp stars • Hypothesis 1 : magnetic braking during the PMS phase(Stepien 2000) • magnetic PMS A/B stars should exist • PMS A/B stars should have a disk • Evolution of the rotation during the PMS phase • Hypothesis 2 : the magnetic field cannot survive in fast rotators (Lignières et al. 1996) • No magnetic fast rotators during the PMS phase We need to observe the PMS intermediate mass stars CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
The Herbig Ae/Be stars } • A and B stars with emission lines • IR emission • Association with nebulae • Characteristics associated with magnetic activity : • resonance lines as N V and O VI, X-ray emission : hot chromospheres or coronae (e.g. Bouret et al. 1997) • magnetospheric accretion(e.g. Mannings & Sargent 1997) • rotational modulation of resonance lines : wind structured by magnetic field (e.g. Catala et al. 1989, 1999) definition (Herbig 1960) Many indirect signs of magnetic fields CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Strategy (1) • Observation of the field Herbig Ae/Be stars • Detection of magnetic field • Characterisation of their magnetic fields • Compare to the magnetic fields of Ap/Bp stars • Fossil field hypothesis test • vsini determination • Compare to vsini of Ap/Bp star • vsini as a function of age • Origin of slow rotation hypothesis tests CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Strategy (2) • Observations of the HAEBE stars in young clusters and associations • stars of a single cluster: = age and = initial conditions • ≠ clusters ≠ ages and ≠initial conditions • Disentangle evolutionary effects from initial condition effects • Understand the evolution of the magnetic field during the PMS phase, and its impact on the evolution of the stars CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
What is our method ? • The spectropolarimetry: polarisation study inside the spectral lines • Recall: Zeeman effect in the stars Stokes V parameter ≠ 0 • In the weak field approximation (B<10kG): V dI/d * Bl We observe the Stokes V spectra CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Magnetic fields in Herbig Ae/Be stars ? • AB Aur : Catala et al. (1993), Catala et al. (1999) • no detection • HD 100546 : Donati et al. (1997) • no detection • HD 104237 : Donati et al. (1997) • 1st detection (recently confirmed) • HD 139614 : Hubrig et al. (2004) • detection not confirmed with more accurate observations • HD 101412 : Wade et al. (2007) • detection (recently confirmed) But now we have ESPaDOnS ! CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
ESPaDOnS (CFHT, Hawaii) + LSD: the good formula • High-resolution spectropolarimeter : R = 65000, broad spectral range (370 - 1080 nm) • Reduction : Libre-Esprit package (Donati et al. 1997, 2007) • Least Squares Deconvolution (LSD) method (Donati et al., 1997) • More lines, better S/N ratio, larger magnitude V range of the star • Increase our chances to detect magnetic fields For more details see the talk of Coralie Neiner CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Our sample • Catalogues : Vieira et al . (2003) and Thé et al. (1994) • 55 Herbig Ae/Be stars • 1.5 – 20 Msun CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Observations and reduction • For each star: • (one or many) Stokes I and V spectra • Determination of Teff and log(g) • LSD method: mask of Teff and log(g) of the star, not including Balmer lines and lines contaminated by emission • Searching for a Zeeman signature in the LSD V profile CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
LSD for I Donati et al. (1997) Spectrum = * Stokes I profile Mask CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
LSD for V Stokes V profile Zeeman signature Spectra = * Stokes V profile B0 B non détecté Mask CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Wonderful Zeeman signatures !!! Results B3, vsini~26 km/s B9, vsini~41 km/s 55 observed, 4 magnetic ~7% magnetic Herbig Ae/Be stars A0, vsini~8.6 km/s A2, vsini~9.8 km/s CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
How characterise their magnetic fields ? Observations of the stars at different time • Model the time variations of Bl • Model the time variations of the Stokes V profiles CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
The oblique rotator model B • Compute I, V and Bl: • I(,) : G(instr,v(,) ) • V(,) dI/dBl(,) (weak field approximation) • Bl(,) : oblique rotator model (Stift 1975) • Integration over the surface : limb-darkening law • 5 parameters: (P,0,,Bd,ddip) D Obs ddip i CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
The Oblique rotator model : Example i = 50 ° = -60° Bd = 1000 G CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Stokes V parameter Mean over the lines Stokes I parameter First method: the longitudinal field Bl (Donati et al. 1997) CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Longitudinal field variations of HD 200775 2 = 1.25 P = 4.328 j Estimation of the period Alecian et al. 2007 CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
2nd method: Fitting the Stokes V profiles • Compute a grid of V by varying the 5 parameters: • 0 : the reference phase • P : the rotation period • : the magnetic obliquity • Bd : the dipole intensity • ddip: the dipole position • 2 minimisation CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Magnetic field characterisation : HD 200775 P = 4.328 d. i = 13 ° = -102° Bd = 1000 G ddip = 0.10 R* Alecian et al. (2007) CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Magnetic field characterisation : V380 Ori P = 7.6 d. i = 34° = -95° Bd = 1.4 kG ddip = 0 R* 2 dipole solutions P = 9.8 d. i = 47° = -95° Bd = 1.4 kG ddip = 0 R* CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Magnetic field characterisation : HD72106 P = 0.63995 d. i = 23° = 60° Bd = 1300 G ddip = 0 R* Folsom et al. (2007) CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Magnetic field characterisation : HD 190073 Catala et al. (2007) • 3 different hypothesis : • Pole-on star • = 0 • Long Period • In all cases: • Simple dipolar Zeeman signature • Signature stable over more than 2 years strong probability for an organised magnetic field • Bd = 100 - 1000 G CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Other detections HD 104237 HD 101412 • SemelPol +UCLES (AAT) = antecedent of ESPaDOnS • Simple Zeeman signature consistent with an organised field A4, vsini = 11.6 km/sBl = -50 G A0, vsini = 4.8 km/sBl = -120 G Thanks to S. Bagnulo and S.C. Marsden CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Fundamental parameters of the stars • Position in the HR diagram compared to evolutionary tracks M, R, age, PMS time Proportion of PMS time performed: gives the evolutionary status (independent of the mass) R on the ZAMS CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
First conclusions on the magnetic field • 7% magnetic HAEBE stars • Projection of magnetic Ap/Bp stars on the PMS phase prediction of 5-10% magnetic HAEBE stars • Large scale organised magnetic field in HAEBE stars • Magnetic intensity of the HAEBE projected on the ZAMS : same order of the intensity of B(Ap/Bp): (assuming the magnetic flux conservation) • HD 200775: on the ZAMS Bd = 3.6 kG • V380 Ori: on the ZAMS Bd = 2.4 kG • HD 72106: already on the ZAMS Bd = 1.3 kG • HD 190073: on the ZAMS Bd = 400 - 4000 G Strong arguments in favour of the fossil field theory CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Distribution of vsini Magnetic HAEBE stars Non magnetic HAEBE stars • All field magnetic HAEBE are slow rotators • No magnetic HAEBE are fast rotators • Magnetic HAEBE stars seem to have been braked more than the non-magnetic HAEBE stars CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Period in function of time • No clear evolution of the period • Majority of HAEBE: between 40 and 80% of their PMS track • To study period evolution we need younger stars than our sample CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Evolution of vsini to the ZAMS Non magnetic HAEBE on the ZAMS Non magnetic HAEBE Norm A/B stars Royer et al. (2002) • vsini HAEBE on the ZAMS close to normal A/B stars • No clear indications of braking from HAEBE age to MS CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
NGC 6611 sample • Age = ~1 Myr • Younger than the field HAEBE • 3 - 20 Msun • Fill the whole in the HRD CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
NGC 2244 Sample • Age ~ 8 Myr • 2 - 20 Msun CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
NGC 2264 sample • Age = 9Myr • 1.5 - 9 Msun CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Cluster results NGC6611 W601 NGC 2264 NGC2244 201 B1.5, vsini~180 km/s B1, vsini~25 km/s ? 12 observed stars 1 magnetic 12 observed stars 1 magnetic 18 observed stars 0 magnetic Does the initial conditions play a role ? CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
vsini of the cluster magnetic stars vsini age Sp.T. • NGC6611 W601 180 km/s ~ 1 Myr B1.5 • NGC2244 201 25 km/s ~ 8 Myr B1 • Can we see a sign of the evolution of the rotation in the magnetic HAEBE stars? CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Conclusions (1) : Field HAEBE study • Magnetism: • 7% magnetic HAEBE • HAEBE magnetism in favour of the fossil field hypothesis • Rotation: • vsini(magnetic HAEBE) < vsini(non magnetic HAEBE) • Magnetic HAEBE: slow rotators and very young • A braking mechanism acts very early during the PMS phase • Dvsini(HAEBE on ZAMS) = Dvsini(A/B Norm) • Constant angular momentum evolution from the age of HAEBE to the MS CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Conclusions (1): preliminary cluster study • Magnetism • Detections in 2 clusters, none in one cluster • The initial conditions may play a role on the presence (or on the intensity) of magnetic fields • Rotation • At 1Myr, one magnetic star with vsini~180 km/s • Promising for the study of the angular momentum evolution, as well as the impact of magnetic field on the rotation evolution of HAEBE stars CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Conclusion (2): Fossil Field against Convective Core hypothesis • 5 magnetic stars are in the totally radiative phase • These stars have the same type of magnetic field of the stars with a convective core Core convection does not appear to be responsible for the presence of magnetic fields in HAEBE stars The magnetic fields of the intermediate mass stars are very likely FOSSIL CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Open Issues • Unanswered questions : • Only a fraction of stars is magnetic : why all the stars are not magnetic ? • Clusters • Binaries : one magnetic + one non-magnetic • Protostellar phase : is the field able to survive during that phase ? • Decentered dipole (or dipole + quadrupole) : how the molecular cloud contraction can form that field topology ? CNRS Summer School La Rochelle, 24 - 28 Septembre 2007
Thank you for your attention CNRS Summer School La Rochelle, 24 - 28 Septembre 2007