670 likes | 957 Views
Capítulo 9 Modelos de Espera. Departamento de Informática Universidad Técnica Federico Santa María. Introducción. Una línea de espera es la resultante de un sistema cuando la demanda por un bien o servicio supera la capacidad que puede proporcionar dicho sistema.
E N D
Capítulo 9 Modelos de Espera Departamento de Informática Universidad Técnica Federico Santa María Simulación/2002 Héctor Allende
Introducción Una línea de espera es la resultante de un sistema cuando la demanda por un bien o servicio supera la capacidad que puede proporcionar dicho sistema. Un sistema está formado por un conjunto de entidades que en paralelo proporcionan el bien o servicio donde las transacciones ingresan aleatoriamente al sistema Simulación/2002 Héctor Allende
Ejemplos de Líneas de Espera • Redes de Comunicaciones y Computadores • Tareas en un Computador • Cajas en Supermercado o Bancos • Modelos de Tráfico en una Ciudad ( T-A -M) • Líneas de Producción e Inventario • Talleres de Reparación • Hospitales • Estaciones de Bomberos • Sistemas de Distribución o Logísticos Simulación/2002 Héctor Allende
Introducción Elementos de estudio de dichas líneas de espera serán entonces los tiempos asociados a cada uno de los procesos que se desarrollan y las llegadas de las transacciones al sistema. Debido a que las variables están fuera del control del tomador de decisiones, será necesario realizar el modelado utilizando procesos estocásticos. Simulación/2002 Héctor Allende
Esquema Líneas de Espera Clientes que entran al Sistema de Servicio y Esperan ser Atendidos Instalaciones de Servicio Población o Fuente de Entrada de Clientes Al Sistema Clientes Servidos salen del Sistema de Servicio y vuelven a la Población SISTEMA Algunos Clientes pueden no entrar al sistema de Servicio Simulación/2002 Héctor Allende
Definición Básica Una línea de espera puede modelarse como un proceso estocástico en el cual la variable aleatoria se define como el número de transacciones en el sistema en un momento dado. El conjunto de valores que puede tomar dicha variable es { 0, 1, 2, 3, 4,.......,N } y cada uno de ellos tiene asociada una Prob.de ocurrencia {P0, P1, P2........, PN } Simulación/2002 Héctor Allende
Objetivo del Estudio • Determinar el nivel de desempeño del sistema: • Cantidad de entidades presente • Velocidad del Servicio en el sistema Interesa minimizar el costo total del sistema Los costos de transacciones dan cuenta de la pérdida por tiempo de espera o la pérdida de clientes por abandono del sistema. Los costos de proporcionar el servicio, dan cuenta de los salarios, energía, mantención, etc. Simulación/2002 Héctor Allende
Objetivo del estudio Matemáticamente : Min {Ct} = Ce S + C q Lq donde S = 1,2,3,4......... Lq= f {S,E(t),.......} Donde: S: Número de entidades que proporcionan servicio. E(t): tiempo promedio de Servicio. Lq: : Número de transacciones en espera. Ce : Costo de servicio por entidad - tiempo. Cq : Costo de servicio por transacción - tiempo. Ct : Costo total por unidad de tiempo Simulación/2002 Héctor Allende
$/tiempo Costo de servicio Ct Costo de servicio Ce.S Ct mínimo Costo de espera Cq.Lq No. de Servidores S* Optimización de Costos Simulación/2002 Héctor Allende
Líneas de Espera (LE) • Los modelos de LE nos permitirán estudiar este tipo de fenómeno y determinar: • Tiempo de Espera Promedio de los Clientes • Largo Promedio de la LE • Factor de Utilización de Servidores • Distribución Tiempos de Espera (Difícil) • Tiempos Ociosos • Eficiencia del Sistema • Pérdidas de Clientes Simulación/2002 Héctor Allende
Elementos Básicos de M-LE • Población: Fuente de Entradas • Tamaño Poblacional: • Infinito ; Finito • Patrón de Llegadas : Tasa de Llegada • Patrón de Salidas : • Cliente Satisfecho • Cliente vuelve a la LE. • Actitudes de los Clientes • Cambios • Renuncias etc. Simulación/2002 Héctor Allende
Estructura General Sistema Espera Servidores en paralelo Entrada al Sistema Salidadel Sistema Fila Fuente de Transacciones potenciales Simulación/2002 Héctor Allende
Estructura • Los elementos básicos constituyentes de un sistema de espera son los siguientes: • Servidor • Fila o Cola • Transacciones Potenciales Simulación/2002 Héctor Allende
Servidor • Representa el mecanismo por el cual las transacciones reciben de una manera completa el servicio deseado. Sus principales características son: • La Cantidad asignada a cada fila existente en el sistema. • La distribución de probabilidad del Tiempo de Atención a las transacciones o (Velocidad de Servicio) Simulación/2002 Héctor Allende
Fila • Es el conjunto de Clientes que espera ser atendido por alguno de los servidores del sistema. Sus principales características son: • Capacidad : Es la cantidad máxima de transacciones que puede albergar cada fila existente en el sistema. • De acuerdo a esto se clasifican en finitas o infinitas. • Orden : Es la forma como los Clientes son extraídas de la fila para su atención. • Ejemplos: FIFO, prioridad, aleatorio, etc. • Forma de salir : como sale de la fila • mediante el proceso de servicio • mediante factores de abandono : insatisfacción, desesperación, etc. Simulación/2002 Héctor Allende
Transacciones Potenciales • Representan el número de clientes potenciales que podría requerir el servicio proporcionado por el sistema. • Sus principales características son: • El Tamaño del conjunto de potencial de clientes. • La distribución de probabilidad del Tiempo entre llegadas o tasa de entrada promedio. Simulación/2002 Héctor Allende
Nomenclatura S número de servidores n número de clientes en el sistema N número máximo de clientes permitidos en el sistema n flujo de clientes que entran cuando hay n clientes en el sistema n capacidad del servidor cuando hay n clientes en el sistema E(t) tiempo promedio de proceso por cliente V(t) varianza del tiempo de proceso E(a) tiempo promedio entre llegadas V(a) varianza del tiempo entre llegada Coeficiente cuadrado de variación del flujo de clientes que entran al sistema. Coeficiente cuadrado de variación del tiempo de servicio. Coeficiente cuadrado de variación del flujo de clientes que salen del sistema. Simulación/2002 Héctor Allende
Nomenclatura pii Probabilidad de que el sistema cambie del estado i a un estado j después de un intervalo de tiempo Pn Probabilidad en estado estable de que existan n clientes en el sistema L Número promedio de clientes en el sistema LqNúmero promedio de clientes en la fila W Tiempo promedio de permanencia en el sistema WqTiempo promedio de permanencia en la fila Factor deutilización promedio del servicio CtCosto total promedio del sistema de líneas de espera por unidad de tiempo CeCosto promedio de servicio por cliente por unidad de tiempo CqCosto promedio de espera por cliente por unidad de tiempo Simulación/2002 Héctor Allende
Clasificación de Kendall y Lee Kendall y Lee 1953 Proponen un sistema de clasificación para sistemas de líneas de espera, el cual considera seis de las características mencionadas en la estructura de los modelos. El cual tiene el siguiente formato (a/b/c)(d/e/f) Simulación/2002 Héctor Allende
Clasificación de Kendall y Lee Donde a Distribución de probabilidad del tiempo entre llegadas de las transacciones b Distribuciones de probabilidad del tiempo de servicio. Símbolos utilizados en estos dos primeros campos son: D : constante Ek: distribución Erlang con parámetro k G : cualquier tipo de distribución GI: distribución general independiente H : distribución hiperexponencial M : distribución exponencial Simulación/2002 Héctor Allende
Clasificación de Kendall y Lee c número de servidores d orden de atención de los clientes Símbolos utilizados en este campo son: FIFO : primeras entradas, primeros servicios LIFO : últimas entradas, primeros servicios SIRO : orden aleatorio PR : con base en prioridades GD : en forma general e número máximo de clientes que soporta el sistema en un mismo instante de tiempo f número de clientes potenciales del sistema de líneas de espera Simulación/2002 Héctor Allende
Ejemplos Un modelo (M/D/3)(FIFO/20/20) representa la clasificación de un sistema donde existen 3 servidores en paralelo atendiendo de acuerdo con un orden de primeras entradas, primeras salidas, con un tiempo de servicio constante. El sistema tiene sólo 20 clientes potenciales, los cuales podrían encontrarse dentro del sistema en un mismo instante. El tiempo entre llegadas de los clientes sigue una distribución exponencial y, en caso de llegar y encontrar todos los servidores ocupados, pasan a formarse de una fila común. Simulación/2002 Héctor Allende
Clasificación de Kendall y Lee Respetando la clasificación Kendall y Lee, es posible agrupar los diferentes modelos de una manera donde los procesos Markovianos y los no Markovianos se separan claramente. Los Markovianos se dividen en modelos de capacidad finita y modelos de capacidad Infinita. Los No Markovianos, se clasifican en modelos con tiempos entre llegadas exponenciales y tiempos de servicios con cualquier tipo de distribución. Simulación/2002 Héctor Allende
Clasificación de Kendall y Lee Mediante fórmulas generales Mediante cadenas de Markov de estado finito Mediante el factor de corrección K (G/G/1) (FCFS/ / ) Mediante la fórmula de Pollaczek- Khintchine (M/G/1) (FCFS/ / ) (M/M/S) (d/N/f) (M/M/1) (FCFS/N/) (M/M/1) (FCFS/N/N) (M/M/S) (FCFS/N/) (M/M/S) (FCFS/N/N) Mediante cadenas de Markov y series geométricas (M/M/S) (d/ / ) (M/M/1) (FCFS/ / ) Mediante el cálculo de límite superior (G/G/S) ( FCFS //) (M/M/S) (FCFS/ / ) Simulación/2002 Héctor Allende
Medidas de desempeño • Medidas de desempeño: • Utilización de Servicio • Tasa de entrada Promedio • Número Promedio de Clientes en el sistema • Número promedio de Clientes en la fila • Tiempo promedio de espera en el sistema • Tiempo promedio de espera en la fila • Coeficiente cuadrado de variación Simulación/2002 Héctor Allende
Ecuaciones Generales Utilización de Servicio Tasa de entrada Promedio Número Promedio de clientes en el sistema Simulación/2002 Héctor Allende
Ecuaciones Generales Número promedio de clientes en la fila Tiempo Promedio de espera en el sistema Tiempo promedio de espera en la fila Simulación/2002 Héctor Allende
Ecuaciones Generales Coeficiente cuadrado de variación Tiempo entre llegadas Tiempo de servicio Tiempo entre salidas del servicio Simulación/2002 Héctor Allende
Procesos Markovianos El proceso estocástico asociado a una línea de espera tiene la propiedad markoviana, es decir la probabilidad condicional de llegar a un estado futuro depende exclusivamente del estado actual en el que se encuentre el sistema, sin importar el estado inicial de dicho sistema. Las probabilidades condicionales deben cumplir con Simulación/2002 Héctor Allende
Procesos Markovianos Las probabilidades de estado estacionario Pj representan el comportamiento Probabilístico de cada estado del sistema a largo plazo y se calculan a partir de las probabilidades de transición( del estado i al estado j) de un paso de acuerdo con las Probabilidades de transición de acuerdo con Simulación/2002 Héctor Allende
Estado Futuro 0 1 2 . . . N 0 1 2 . . . N Estado Actual Matriz de probabilidades a un paso Simulación/2002 Héctor Allende
Procesos Markovianos La matriz Probabilidades a un paso genera un sistema de ecuaciones con N+1 incógnitas, N+1 ecuaciones independientes y una ecuación redundante que debe ser eliminada. Simulación/2002 Héctor Allende
Estado Futuro 0 1 2 . . . N 0 1 2 . . . N Estado Actual Matriz de probabilidades La solución a este sistema de ecuaciones origina los valores de las probabilidades estacionarias independientes del estado en que se encuentra el sistema inicialmente. Simulación/2002 Héctor Allende
Ejemplo Estado Futuro 0 1 2 3 4 0 1 2 3 4 Estado Actual • Datos del ejemplo: Consultorio de Salud • Número total de observaciones del SM: 73 • Intervalo entre observación: 5 Minutos • Tabla de relaciones existente entre datos Simulación/2002 Héctor Allende
Ejemplo • La matriz anterior se explica como: • De las 73 observaciones, en 10 de ellas el sistema estuvo en estado 0 y 5 minutos después el sistema había permanecido igual en 3 ocasiones, había cambiado a estado 1 en 5 ocasiones, había cambiado a estado 2 en 2 ocasiones, y no se observaron cambios a los estados 3 y 4. Simulación/2002 Héctor Allende
Estado Futuro 0 1 2 3 4 0 1 2 3 4 Estado Actual Ejemplo Calculando la probabilidad condicional de estado presente i al estado futuro j, se obtiene la siguiente matriz a un paso: Simulación/2002 Héctor Allende
Ejemplo Donde claramente Aplicando las ecuaciones de estado estacionario a la matriz de un paso, se obtienen las ecuaciones Simulación/2002 Héctor Allende
Ejemplo Resolviendo el sistema de ecuaciones Número promedio de transacciones en la cola Simulación/2002 Héctor Allende
Procesos Markovianos Característica principal: Distribución de probabilidad que define la llegada y salida de transacciones del sistema: sigue una ley Poisson. Para un intervalo de tiempo t esta dado por: Simulación/2002 Héctor Allende
Procesos Markovianos • Condiciones que se deben cumplir • Solamente puede ocurrir una llegada entre t y t. • Solamente puede ocurrir una salida entre t y t. • Solamente puede ocurrir una llegada o una salida entre t y t. • Por lo que el cambio de estado de n a n+1 se lleva a cabo al ocurrir una llegada. • Un cambio de estado de n a n-1 solo ocurre cuando se produce una salida. Simulación/2002 Héctor Allende
Matriz de probabilidad a un paso Estado Futuro 0 1 2 3 . . . N-1 N 0 1 2 3 . N-1 N Estado Actual Simulación/2002 Héctor Allende
Procesos Markovianos Lo cual conduce a: Simulación/2002 Héctor Allende
Ecuaciones de Balance De la matriz se obtienen las ecuaciones de balance Simulación/2002 Héctor Allende
Ecuaciones de Balance Sustituyendo se obtiene Resolviendo el sistema Simulación/2002 Héctor Allende
Ecuaciones de Balance Generalizando Finalmente se obtiene Simulación/2002 Héctor Allende
Elementos Básicos de LE • Cola de Espera • Infinita • Finita : Tamaño Máximo • Instalaciones de Servicio • Número Instalaciones • Disposición Instalaciones de Servicio • En Serie • En Paralelo • Redes de Servidores • Distribución Tiempos de Servicio Simulación/2002 Héctor Allende
Elementos Básicos de LE • Disciplina de Servicio • LIFO • Aleatorio • FIFO • Asignación de Prioridades • A continuación realizaremos las definiciones de las cantidades que permitirán el estudio del comportamiento de un sistema de LE. Simulación/2002 Héctor Allende
LE : Definiciones Elementales N(t):Número Total de Clientes en el Sistema en el tiempo t Pn(t):Probabilidad de Estado. Probabilidad que en el sistema se encuentren n clientes en el instante t ln(t):Tasa de llegada de clientes nuevos cuando se encuentran n Clientes en el Sistema, en el tiempo t mn(t):Tasa de servicio para el conjunto instalación de servicio cuando se encuentran n clientes en el sistema, en el instante t S :número de servidores o estaciones de servicio de las instalaciones de servicio del sistema Simulación/2002 Héctor Allende
LE : Definiciones y Cálculos Elementales ln :Tasa de Llegada en Estado Estacionario cuando hay n clientes en el sistema mn :Tasa de Atención de las instalaciones de servicio en estado estacionario cuando hay n clientes en el sistema bi : Probabilidad que existan i servidores ocupados b0 = P0si hay cero servidor ocupado, entonces hay cero clientes en el sistema bi = Pi probabilidad que existan i, i < s, servidores ocupados, es igual a que existan i clientes en el sistema bs = Pn probabilidad que existan s servidores ocupados, es igual a que existan s o más clientes en el sistema 8 n=s Simulación/2002 Héctor Allende
LE : Definiciones y Cálculos Elementales 8 8 i=0 n=0 B Número Esperado de Servidores ocupados en un instante cualesquiera B = i * b i esto resulta ser también al número esperado siendo atendidos en un instante dado cualquiera Ls Número Esperado de Clientes en el Sistema, en cualquier instante Ls = n Pn [Servidores] [Clientes] Simulación/2002 Héctor Allende