1 / 47

Bethe Ansatz in the AdS/CFT correspondence

Bethe Ansatz in the AdS/CFT correspondence. Thanks to: Niklas Beisert (Princeton) Johan Engquist (Utrecht) Gabriele Ferretti (Chalmers) Rainer Heise (Potsdam) Vladimir Kazakov (Paris) Thomas Klose (Uppsala) Andrey Marshakov (Moscow) Joe Minahan (Uppsala & Harvard) Kazuhiro Sakai (Paris)

jaron
Download Presentation

Bethe Ansatz in the AdS/CFT correspondence

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bethe Ansatz in the AdS/CFT correspondence Thanks to: Niklas Beisert (Princeton) Johan Engquist (Utrecht) Gabriele Ferretti (Chalmers) Rainer Heise (Potsdam) Vladimir Kazakov (Paris) Thomas Klose (Uppsala) Andrey Marshakov (Moscow) Joe Minahan (Uppsala & Harvard) Kazuhiro Sakai (Paris) Sakura Schäfer-Nameki (Hamburg) Matthias Staudacher (Potsdam) Arkady Tseytlin (Imperial College) Marija Zamaklar (Potsdam) Konstantin Zarembo (Uppsala U.) EuroStrings 2006 Cambridge, 4/4/06

  2. AdS/CFT correspondence Maldacena’97 Gubser,Klebanov,Polyakov’98 Witten’98

  3. Strings in AdS5xS5 RR flux requiresmanifestspace-time supersymmetry Green,Schwarz’84 World-sheet theory is Green-Schwarzcoset sigma model on SU(2,2|4)/SO(4,1)xSO(5). Metsaev,Tseytlin’98 Conformal gauge is problematic: no kinetic term for fermions, no holomorphic factorization for currents, …

  4. Integrability in string theory But the model is integrable! Bena,Polchinski,Roiban’03 √ • infinite number of conserved charges • separation of variables in classical equations of motion • quantum spectrum is determined byBethe equations √ Dorey,Vicedo’06 ?

  5. Integrability in N=4 SYM • Bethe ansatz for planar anomalous dimensions: • rigorous up to three loops • conjectured to all loop orders • Infinite number of conserved charges associated with local operators (with unclear interpretation) Minahan,Z.’02 Beisert,Kristjansen,Staudacher’03 Beisert,Staudacher’03 Beisert,Dippel,Staudacher’04 Beisert,Staudacher’05; Rej,Serban,Staudacher’05

  6. Field content: N=4 Supersymmetric Yang-Mills Theory Brink,Schwarz,Scherk’77 Gliozzi,Scherk,Olive’77 The action:

  7. Operator mixing Renormalized operators: Mixing matrix (dilatation operator):

  8. Local operators and spin chains related by SU(2) R-symmetry subgroup b a b a

  9. One loop planar (N→∞) diagrams:

  10. Permutation operator: Minahan,Z.’02 • Integrable Hamiltonian! Remains such • at higher orders in λ • for all operators Beisert,Kristjansen,Staudacher’03; Beisert’03; Beisert,Dippel,Staudacher’04; Rej,Serban,Staudacher’05 Beisert,Staudacher’03

  11. The spectrum Ground state: Excited states (magnons):

  12. Exact spectrum Rapidity: Bethe’31 Zero momentum (trace cyclicity) condition: Anomalous dimension:

  13. scattering phase shifts momentum Exact periodicity condition: periodicity of wave function

  14. u 0

  15. u bound states of magnons – Bethe “strings” 0 mode numbers

  16. Macroscopic spin waves: long strings Sutherland’95; Beisert,Minahan,Staudacher,Z.’03

  17. x Scaling limit: defined on a set of conoturs Ck in the complex plane 0

  18. Classical Bethe equations Normalization: Momentum condition: Anomalous dimension:

  19. Heisenberg model in Heisenberg representation Heisenberg operators: Hiesenberg equations:

  20. Continuum + classical limit Landau-Lifshitz equation

  21. Consistent truncation String on S3 x R1:

  22. Conformal/temporal gauge: ~energy 2d principal chiral field – well-known intergable model Pohlmeyer’76 Zakharov,Mikhailov’78 Faddeev,Reshetikhin’86

  23. Equations of motion Currents: Virasoro constraints:

  24. Light-cone currents and spins Classical spins: Virasoro constraints: Equations of motion:

  25. High-energy approximation : Approximate solution at The same Landau-Lifshitz equation. Kruczenski’03 Kruczenski,Ryzhov,Tseytlin’03

  26. Integrability Equations of motion: Zero-curvature representation: equivalent

  27. time Conserved charges Generating function (quasimomentum): on equations of motion

  28. Non-local charges: Local charges: Analyticity:

  29. Classical string Bethe equation Kazakov,Marshakov,Minahan,Z.’04 Normalization: Momentum condition: Anomalous dimension:

  30. Quantum Bethe equations (two particle factorization)

  31. find the dispersion relation (solve the one-body problem): • find the S-matrix (solve the two-body problem): full spectrum Bethe equations • find the true ground state Successfully used on the gauge-theory side Staudacher’04; Beisert’05

  32. Landau-Lifshitz model WZ term:

  33. Perturbation theory in order to get canonical kinetic term Minahan,Tirziu,Tseytlin’04

  34. = is not renormalized p p S 2→2 = Σ p` p`

  35. Summation of bubble diagrams yields Bethe equations

  36. Klose,Z.’06 Heisenberg model: the same equations with The difference disappears in the low-energy (u→∞) limit.

  37. AAF model SU(1|1) sector: • in SYM: Callan,Heckman,McLoughlin,Swanson’04 • in string theory: Alday,Arutyunov,Frolov’05

  38. p0

  39. p0 -μ μ – chemical potential μ→-∞ All poles are below the real axis.

  40. Empty Fermi sea: Physical vacuum: E E +m +m -m -m Berezin,Sushko’65; Bergknoff,Thaker’79; Korepin’79

  41. NO ANTIPARTICLES p p S 2→2 = Σ p` p`

  42. Exact S-matrix θ – rapidity:

  43. Bethe ansatz Klose,Z.’06 Im θj=0: positive-energy states Im θj=π: negative-energy states

  44. Ground state θ k+iπ -k+iπ iπ 0 - UV cutoff

  45. Mass renormalization: This equation also determines the spectrum, the physical S-matrix, ...

  46. Weak-coupling (-1<g<1): • Non-renormalizable • (anomalous dimension of mass is complex) • Strong attraction (g>1) • Unstable • (Energy unbounded below) • Strong repulsion (g<-1): • Spectrum consists of fermions and anti-fermions • with non-trivial scattering

  47. Questions Continuous Discrete (string worldsheet) vs. (spin chain) in Bethe ansatz: Beisert,Dippel,Staudacher’04 Berenstein,Maldacena,Nastase’02 • Possible resolution: • extra hidden d.o.f. (“particles • on the world sheet • that create the spin chain”) • spin chain is thus dynamical Mann,Polchinski’05 Rej,Serban,Staudacher’05 Gromov,Kazakov,Sakai,Vieira’06 Choice of the reference state, the true vacuum, antiparticles, …

More Related