1 / 5

Training Acoustic model using Sphinx Train

Training Acoustic model using Sphinx Train. Jaykrishna shukla,Mubin Amehed& cara Santin Department of Electrical and Computer Engineering Temple University. URL:. Introduction to Feature generation.

Download Presentation

Training Acoustic model using Sphinx Train

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Training Acoustic model using Sphinx Train Jaykrishnashukla,MubinAmehed& caraSantin Department of Electrical and Computer Engineering Temple University URL:

  2. Introduction to Feature generation • The system does not directly work with acoustic signals. The signals are first transformed into a sequence of feature vectors, which are used in place of the actual acoustic signals. Therefore, we run a process called Feature extraction. • process of measuring certain attributes of speech needed by the speech recognizer to differentiate phonemes of a word. It is also known as front-end processing and signal processing. • A feature vector is nothing but a list of numerical measurements of speech attributes • The feature vectors that SphinxTrain 1.0 generates are 13 dimensional vectors by default.

  3. Feature Generation with SphinxTrain 1.0 • This week we decided to Switch from windows to Linux so first thing that we compiled SphinxTrain 1.0 in Euler and got the bin files. • SphinxTrain has a Perl script called make_feats.pl, this scripts acts like a environment setter for the bin file called wav2feet. • To generate feature vector for audio data, one has to creat a file called fileids which is a text file with a list of all the audio files for which the user wants to generate feature. • The parameters for the make_feats file are fed in through a configuration file.

  4. This week’s accomplishment • This week we learned Linux shell commands, Perl and other countless debugging skills using perldebuger in Euler. • We also got feature vectors generated for TIDigits short test and train 8kHz here is the sample output.

  5. Conclusion and Future • This was the first step in training next week we will generating the ci phone models for TIDigits short 8KHZ. • It will include the following highlighted steps

More Related