380 likes | 477 Views
Explore the implementation strategies and benefits of Quality by Design for biologics with focus on FDA perspectives, case studies, risk assessment, and process understanding. Dive into design space concepts, critical process parameters, and real-life challenges in QbD application.
E N D
Implementation Activities for QbD:FDA Office of Biotechnology Products Steven Kozlowski, Director Office of Biotechnology Products OPS, CDER WCBP CMC Strategy Forum QbD for Biologics Bethesda, MD 7/19/2010
Quality by Design • A systematic approach to development that begins with predefined objectives and emphasizes product and process understanding and process control, based on sound science and quality risk management (ICH Q8R) • QbD concepts apply to complex products • Implementation strategy may differ • Product heterogeneity may complicate the definition of the CQAs • Processes are often also more complex, with multiple interactions
Potential Benefits for Embracing QbD • Smoother transitions from IND to Licensure • Increase productively/efficiency • Less lot rejections, recalls, and investigations for manufacturing deviations • Expedited implementation of process changes • Manufacturing processes that are adaptable • Reliable supply of high quality products • Fewer inspections • Fewer submissions to the Agency
QbD Implementation • Link to small-molecule learnings • ONDQA pilot and application experience • ICH IWG, Q8R, Q9, Q10 • ICH Q11 • OBP staff participating in conferences, forums and training on QbD • Design of Experiments Training • Mock Case Studies • OBP Pilot
Biotech QbD Mock Case Studies EFPIA drafting a case study Industry CMC Biotech Working Group Publishes a QbD Case study (10/31/09) A-Mab: a Case Study in Bioprocess Development Abbott, Amgen, Eli Lilly & Company, Genentech, GlaxoSmithKline, MedImmune, and Pfizer Available on the ISPE Website Nov 2009 Workshops on case study planned (ISPE & CASSS) 278 pages
A template for a QbD submission A definitive source of regulatory definitions & terminology The final ideal scientific approach to biotech QbD A source of challenging, well thought out examples The basis for discussions and forums likely to contribute to QbD implementation A tremendous effort by Ken Seamon, John Berridge and the top scientific talent of multiple companies Thanks to Anjali Katarina & Conformia but it can be…. A-Mab is … not….
ICH Q8R: Design Space • Definition • The multidimensional combination and interaction of input variables (e.g., material attributes) and process parameters that have been demonstrated to provide assurance of quality • Regulatory Flexibility • Working within the design space is not considered a change • Important to Notice • Design space is proposed by the applicant and is subject to regulatory assessment and approval
pyro-E pyro-E O O D D D D O O G G D D G G K K Many Attributes • Biological Studies • In vitro • Animal • Clinical • Prior Knowledge • Platform • (9600)2≈ 108 Risk Assessment & Ranking Approaches Good Science
FMEA Occurrence = [severity] x [occurrence] Severity From Attributes to Spaces • Assign relative risk for each factor • Risk Ranking • Screening DOE x [detectability] Risk assessment includes process develop., manufact., QC staff, etc. & trained facilitator • Optimization • Process Characterization
A-Mab Design Space Based on Process Capability Bayesian Reliability • Example: Day 15, Osmo=360 mOsm and pCO2=40 mmHg >99% confidence of satisfying all CQAs 50% contour approximates “white” region” in contour plot aFucos >11% pH pH Galact >40% Temperature (C) Temperature (C) 10
pH Load Conductivity Critical Process Parameters (CPP) • Critical Process Parameter (CPP): A process parameter whose variability has an impact on a critical quality attribute and therefore should be monitored or controlled to ensure the process produces the desired quality. (ICH Q8(R2))
40oC 5oC CPP 25oC 15oC KPP 18oC 22oC GPP What else is in the Design Space? • Are only CQAs used to defining Design Space? Acidic variants used in A-Mab Production Bioreactor • Are only CPPs used in a design space? • A CPP is a function of the range evaluated (either experimentally or through prior knowledge)
40oC 5oC Fundamental Models 22oC 18oC Experiments 25oC 15oC Prior Knowledge Can a Design Space be larger than the Knowledge Space? No failures seen; Models, Prior Knowledge & Experiments show interactions are unlikely If not included in the Design Space (not a CPP), is the Design Space infinite for that parameter?
The multidimensional combination and interaction of input variables (e.g., material attributes) and process parameters that have been demonstrated to provide assurance of quality Temperature Cycle # Equilibration pH pH Load Conductivity Design Space
Initial Design Space Weaknesses • Based on model (DOE) • Predictions are extrapolations • inside as well as outside explored space • Missed factors • Missed interactions at screening • Each factor alone has little impact • Larger risk with complex processes • A-Mab interaction risk score is of value • Missed important responses • Larger risk with complex products • Interactions between responses • Experiments done at lab scale
pH Adapted from T. Kourti Load Lifecycle Approach • Managing uncertainty • Complex products • Complex processes • 1st Prin. Models rare • Multivariate SPC • Facilitates moving across scales Dimensionless Variables Engineering Approaches To Modeling
Design Space applicability to multiple operation scales demonstrated using PCA/MVA models 500 L – 25,000 L n e l l A l a d n a R A-Mab Engineering Design Space Design Space for scale-independent parameters was developed using qualified scale-down models 2L Scale • Includes bioreactors of multiple scales and designs (2L -25K L) • Based on keeping microenvironment experienced by cells equivalent between scales • Includes bioreactor design considerations and scale-dependent process parameters linked to fluid dynamics and mass transfer Can a Design Space Specify Evaluation Methods & Criteria ?
Conductivity pH Load pH Load Moving within the Design Space Designing Spaces Control Strategy (CS) & Quality System (QS): Evaluation beyond CS not filed Fixed equipment, scale, etc. Evaluation and criteria beyond routine CS filed Fixed resin characteristics & methodology; Scalable Adaptive Control Strategy
Control Strategy definition from Q10 • Control Strategy: A planned set of controls, derived from current product and process understanding, that assures process performance and product quality. • The controls can include parameters and attributes related to drug substance and drug product materials and components, facility and equipment operating conditions, in-process controls, finished product specifications, and the associated methods and frequency of monitoring and control.
Flexible methodology & Scale Charge Separation Non-ionic Interactions Moving within the Design Space Designing Spaces QS: evaluation and criteria beyond SC filed; Change reported (e.g. AR) Use of Expanded Change Protocol or Post-market Management Plan • Design Space- • Working within the design space is not considered a change
OBP Pilot Program FR Notice July 2, 2008 • To define clinically relevant attributes for protein products (regulated by OBP) and link them to manufacturing processes • To consider quality-by-design (QbD) approaches to unit operations in supplements (10) as well as original applications (5) • To explore the use of protocols submitted under -(21 CF 314.70(e) and 601.12(e)) • Notice of Extension of Deadlines and Increase in the Number of Original Applications to 8 • Federal Register/Vol. 74, No. 179 /Sep 17, 2009
Biotechnology QbD Pilot Status Applications Accepted in QbD Pilot 5 Original Applications 4 Monoclonal Antibodies and 1 Fc Fusion Protein 4 Post-approval Supplements 2 Monoclonal Antibodies, 1 Therapeutic Protein, 1 multi-product 2 with site transfers; Working closely with Compliance MAPP 4730.3 OBP & DMPQ Interactions on BLAs OBP QbD Pilot Meetings 6 meetings held with Pilot sponsors in 2009
QbD Pilot 2009 Meeting Questions • 29 questions • Questions with subparts were counted separately if they covered a different set of QbD categories or topics • 25 associated only with Mabs • 4 included other therapeutic proteins • Question General categories • Design Space 13 • Risk Assessment Methods 6 • Control Strategy 4 • Expanded Change Protocols 4 • Small-scale Models 3
QbD Pilot Meetings • Typical Question • Here is our plan and some example data • Is this acceptable? • Typical Answer • In principle YES… • but we will need to see that actual submission • Comments on clarifying ranges, scoring, definitions • Occasionally closer to NO (“Only” or “All”) • Only small scale stability on significant changes • ECP covering all changes
Design Space Comments • Factor choices (e.g. raw materials) • Prior knowledge base • Appropriateness of the experimental design and statistical analysis • Impact of assay variability on design space • Viral clearance • Linkage to other steps • Claims for scale in design space • Protocols as part of a design space • CPPs alone do not define a design space-assurance of quality does • Limits for parameters that may not be critical parameters; Relationship to Design Space
2010 (Very) Preliminary Update • 10 meetings total so far • 47 questions used for initial analysis • within a meeting some questions counted separately; some fused based on topics • monoclonal antibodies with some multiproduct • 4 companies for 5 pilot applications • 3 original: 2 supplements • Typical question; Typical Answer -- still true • Comments a bit more granular
Risk Assessment Methods Design Space Categories Scaled down models Expanded Change Protocols Control Strategy 0.00 1.00 2.00 2009 Meetings 2010 Meetings Questions Per Meeting (Avg) General Categories
Process characterization Model qualification Categories Attribute criticality Viral Clearance 0.00 0.40 0.80 1.20 2009 Meetings 2010 Meetings Questions Per Meeting (Avg) Neutral/Decrease
Parameter Criticality Scope Change Evaluation Strategy Categories Regulatory Filings Inspection/Facility Experimental Design & Statistics 0.00 0.40 0.80 1.20 2009 Meetings 2010 Meetings Questions Per Meeting (Avg) Increase
Topics • Design space & CPPs • Review issue • Details on criteria for ECP • Statistics; trend analysis • Complex risk tools for process • Thresholds • Linking product and process risks • Factors & details • Definitions • Cannot be company specific • Even ICH definitions need a shared commentary • CPPs
Johansen (1965) NIR surrogate for ribbon density ACE Case Roller Compaction This process understanding may establish the independence of site, scale, and equipment. Can an output be part of a design space?
Looking Forward • Continue to learn from small-molecule QbD • ICH Q11 • Clarity on definitions • Reviewer Training • Risk Assessment • DOE • Mock Case Studies • Conferences • OBP Pilot • Get into the details
Credits • Janet Woodcock • Helen Winkle • Moheb Nasr • Christine Moore • Jon Clark • Joe Kutza • Barry Cherney • Patrick Swann • Keith Webber • Susan Kirshner • Ken Seamon • John Berridge