310 likes | 483 Views
n ’04 June 17, 2004 Paris. Super Beams. Future dream for 10~20years from now. Contents Introduction “Super beam” experiments Summary. Takashi Kobayashi IPNS, KEK. Decay Pipe. Focusing Devices. Proton Beam. Target. m. n m. p , K. Beam Dump. What is (Original) Super Beam?.
E N D
n ’04 June 17, 2004 Paris Super Beams Future dream for 10~20years from now • Contents • Introduction • “Super beam” experiments • Summary Takashi Kobayashi IPNS, KEK
Decay Pipe Focusing Devices Proton Beam Target m nm p,K Beam Dump What is (Original) Super Beam? Conventional neutrino beam with (Multi-)MW proton beam (nFact) • Pure nm beam (≳99%) • ne (≲1%) from pme chain and K decay(Ke3) • nm/nm can be switched by flipping polarity of focusing device Strongly motivated by high precision LBL n osc. exp.
“Super Beam” Experiments (-) (-) Long baseline osc. experiments Classification by G.Feldman @SB WS@BNL • 1st phase experiments (Now) • Confirmation of atm. n results • K2K(1999~)/MINOS(2005~)/ICARUS/OPERA(2006~) • 2nd phase experiments (Now~10yrs) • Discovery of ne appearance • Designed & Optimized aft. SK atm n • ~MW beam w/ ~50kton detector • T2K-I (approved. 2009~)/NOnA (2009?~) / (C2GT) • 3rd phase experiments(10~20yrs?) • CP violation and mass hierarchy thru nmne app. • Typically Multi-MW beam & Mton detector • 2nd phase is critical step to go
d-d, a-a for nmne appearance & CPV Main CP-odd Solar Matter Matter eff.: Sensitivity indep. from q13 (if no BG & no syst. err) # of signal ∝ sin2q13 (Stat err∝sinq13), CP-odd term ∝ sinq13
CPV vs matter effect nmne osc. probability w/ CPV/matter 295km 730km @sin22q13=0.01 Smaller distance/lower energy small matter effect Pure CPV & Less sensitivity on sign of Dm2 Combination of diff. E&L help to solve.
Far Det. q Decay Pipe Horns Target En(GeV) En(GeV) Ep(GeV) High intensity narrow band beam-- Off-axis (OA) beam -- (ref.: BNL-E889 Proposal) nm flux Decay Kinematics 1 2 5 1/gp~q • Increase statistics @ osc. max. • Decrease background from HE tail
Idea of C2GT (CNGS to Gulf of Taranto) F.Dydak et.al. nm Flux (m-2) • OA-CNGS • Movable underwater Cherenkov det. (r=150m), 2Mt fid vol, L=1,200~1,600km • ~5,000 nm CC/year • Disappearance & Appearance • sin22q13~0.008 @90% • Technology to be established (underwater, light collection, LE PID,…) ne 1 En (GeV)
J-PARC (Tokai-mura) Kamioka T2K-II • (0.75MW)4MW 50GeV PS @ J-PARC • OA 2~3deg • Enpeak=0.5~0.8GeV • L=295km • Hyper Kamiokande • ~360k nm CC/yr • q13, CPV • Small matter effect OAB2.0deg OAB2.5deg OAB3.0deg
N Pacific Ocean Neutrino Beam Line 3GeV PS 50GeV PS (0.75MW) Linac FD To SK J-PARC(Japan Proton Accelerator Research Complex) (formerly known as JHF) • Construction: 2001~2007 • 0.75MW 50GeV-PS • Possible upgrade to 4MW • Preliminary study done • Rep. rate x 2.5 • Double RF cavities (space OK) • Eliminate idling time in acc. cycle • Double # of circulating protons • “barrier bucket method” to avoid space charge limit • Issues • Achieve first goal (0.75MW) • Beam loss • Target,… (these apply also for other projects)
J-PARC Tokai-village December, 2003 December, 2003
Far Detector: Hyper-Kamiokande 2 detectors×48m × 50m ×250m, Total mass = 1 Mton
Sensitivity for q13 sin22q13~0.018 (3s) sin22q13~0.006 (90%) 0.5xsin22q13 sin22q13 < 10-3 can be searched if syst err ~ few %
nm: 2 years nm: 6.8 years n / n CC interaction spectrum for CPV meas. nm cross section difference NCC(/100MeV/22.5kt/year) nm Wrong sign BG (x10 nm case)
Expected signal and BG (SK full sim) Very Preliminary nm:2yr, nm:6.8yr 4MW 0.54Mt sin22q13=0.02 Dm212=6.9x10-5eV2 Dm322=2.8x10-3eV2 q12=0.594 q23=p/4 q13=0.05 (sin22q13=0.01)
Sensitivity for CPV in T2K-II 4MW, 540kt 2yr for nm 6~7yr for nm CHOOZ excluded sin22q13<0.12@Dm312~3x10-3eV2 Dm212=6.9x10-5eV2 Dm322=2.8x10-3eV2 q12=0.594 q23=p/4 stat+5%syst. stat+2%syst. (signal+BG) stat only stat+10%syst. no BG signal stat only T2K 3s discovery T2K-I 90% 3s CP sensitivity : |d|>20o for sin22q13>0.01 with 2% syst.
Geneve 130km 40kt 400kt Italy Europe: SPLFrejus • 4MW 2.2GeV Superconducting Proton Linac (SPL) @ CERN • Low energy wide band (En~0.3GeV) • L=130km • Water Cherenkov 40 400kt (UNO) • ~18,000 nm CC/year/400kt • q13, CPV • Small matter effect • SPL in R&D, UNO in conceptual design
Fluxes for SPL beam Low energy wide band beam Less NC p0 BG for ne search Mezzetto
Sensitivity for CPV 150 d(deg) d d 0 -150 5 2 q13(deg) Q13 sin22q13=0.03
(Ref: Diwan et al., PRD68, 012002, 2003) BNL Homestake 2540 km BNL-Homestake • 28GeV AGS upgrade to 1MW (2MW) cf current 0.1MW • Wide band beam (0.5~6GeV) • L=2,540km • Mton UNO (alternative option: Liq. Ar.) • ~13,000 nm CC/year/500kt • Cover higher osc. maxima Goals • ne appearance • Sign of Dm23 • CPV • q12, Dm12 Possible w/ only n run at certain parameter region
Brookhaven AGS Upgrade • Direct injection of ~ 11014 protons via a 1.2 GeV sc linac extension • low beam loss at injection; high repetition rate possible • further upgrade to 1.5 GeV and 2 1014 protons per pulse possible (x 2) • 2.5 Hz AGS repetition rate • triple existing main magnet power supply and magnet current feeds • double rf power and accelerating gradient • further upgrade to 5 Hz possible (x 2)
Highway tunnel Electronic crates Detector f≈70 m h =20 m Perlite insulation A. Rubbia Detector options: UNO (or Liq. Ar?) 440kton fiducial mass A.Rubbia ~100kton C.K.Jung
Mass Hierarchy Resolution Diwan, Mar.2004 • w/ only n running, reversed hierarchy rejected >2.5s level • with w/ n/n running, then >10s
Sensitivity on CPV Diwan, Mar.2004
8 GeV synchrotron option Original concept (May 2002, Fermilab-TM-2169) Large aparture (100x150mm) magnets LINAC 400MeV 600MeV MI cycle time 1.87s 1.53s Net results : MI power of 1.9MW 8 GeV superconducting linac Recent study Direct injection 2MW @ 8GeV & 40~120GeV(MI) Future flexibility Issue: Cost? Fermilab Proton Driver (PD) Replace injector for Main Injector Increase MI power by x5~6 (2MW) Improve MINOS & NOnA sensitivities
Potential Flexibility of LINAC Neutrino “Super- Beams” SY-120 Fixed-Target NUMI Off- Axis X-RAY FEL LAB Anti- Proton 8 GeV 2 MW 8 GeV Linac To Homestake 120 GeV and 8 Gev Main Injector @2 MW ~ 700m Active Length Slow-Pulse Spallation Source & Neutrino Target Also includes upgrades to Main Injector for current and cycle B.Foster and D.Michael, BNL-APS SB WS Mar.04
NOnA + PD : Mass hierarchy G.Feldman Jun.04
Another possibility with PD A case study for future experiment with PD 2MW 8/120GeV PD “4MW” WB/OA to Homestake @1290km (or Henderson) En=0.5~3GeV Cover higher osc max 500kt WC or 100kt Liq.Ar ~50k nm CC/year/500kt Studies of physics potential started 120 GeV protaons Homestake 30 mR maximum off axis BNL ~4m 8 GeV protons Fermilab Henderson Mine ~200M D.Michael Mar.04@BNL FeHo (Fermilab-Homestake) Beam Line 1290km ~8m 5yrs
Sensitivities with 500kt Water C Disappearance 5yrs running D.Michael May 04, FNAL d(Dm2)<1% d(sin22q)~4% (90%) Appearance 100kt Liq Ar could be better thanks to det. resolution Studies in progress.
Summary of (“super-beam”) LBL experiments I II III Running, constructing or approved experiments
“Graphical” Summary of experiments Dm2=2.5x10-3eV2 T2K-II BNL-Hs 10~20yrs FeHo NOnA+PD SPL-Frejus BNL-Hs (<5p) C2GT C2GT NOnA <10yrs T2K-I MINOS FeHo CNGS <5yrs NOnA K2K CNGS <30GeV MINOS osc. maxima T2K K2K SPL-Frejus 5 1 3 1.27xDm2(L/E) [p/2]
Summary • Next generation “Super Beam” experiments will provide chances to clarify whole view of n mixing • q13 • CPV, sign of Dm2, .. • High precision measurements of parameters • Several experiments are under consideration • (Multi-)MW beam + Mton detector (or Liq.Ar) • Japan: 4MW 50GeV @ J-PARC Mt Hyper-Kamiokande • Europe: 4MW 2.2GeV SPL Mt UNO • US-BNL: 1(2)MW AGS UNO(Liq.Ar)@~2500km • US-FNAL: 2MW PD/MI NOnA/ UNO(liq.Ar)@~1300km • Future direction much depend on results from “2nd phase” experiments • T2K-I(2009~) and NOnA(if approved) • Let’s do experiments to know q13 (2nd phase) ASAP!!, • While keeping R&D efforts for future projects • (while reducing too many meeting!)