1 / 18

4-5

Exponential and Logarithmic Equations and Inequalities. 4-5. Warm Up. Lesson Presentation. Lesson Quiz. Holt McDougal Algebra 2. Holt Algebra 2. Objectives. Solve exponential and logarithmic equations and equalities. Solve problems involving exponential and logarithmic equations.

jaynec
Download Presentation

4-5

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Exponential and Logarithmic Equations and Inequalities 4-5 Warm Up Lesson Presentation Lesson Quiz Holt McDougal Algebra 2 Holt Algebra 2

  2. Objectives Solve exponential and logarithmic equations and equalities. Solve problems involving exponential and logarithmic equations.

  3. An exponential equation is an equation containing one or more expressions that have a variable as an exponent. To solve exponential equations: • Try writing them so that the bases are all the same. • Take the logarithm of both sides.

  4. Helpful Hint When you use a rounded number in a check, the result will not be exact, but it should be reasonable.

  5. Example 1A: Solving Exponential Equations Solve and check. 98 – x = 27x – 3 Rewrite each side with the same base; 9 and 27 are powers of 3. (32)8 – x = (33)x – 3 To raise a power to a power, multiply exponents. 316– 2x = 33x – 9 16 – 2x = 3x – 9 Bases are the same, so the exponents must be equal. x = 5 Solve for x.

  6. log5 log5 x–1 = log4 log4 x = 1 + ≈ 2.161 Example 1B: Solving Exponential Equations Solve and check. 4x – 1= 5 5 is not a power of 4, so take the log of both sides. log 4x – 1 = log 5 (x– 1)log 4 = log 5 Apply the Power Property of Logarithms. Divide both sides by log 4. CheckUse a calculator. The solution is x ≈ 2.161.

  7. Check It Out! Example 1a Solve and check. 32x = 27 Rewrite each side with the same base; 3 and 27 are powers of 3. (3)2x = (3)3 To raise a power to a power, multiply exponents. 32x = 33 2x = 3 Bases are the same, so the exponents must be equal. x = 1.5 Solve for x.

  8. log21 log21 –x = log7 log7 x = – ≈ –1.565 Check It Out! Example 1b Solve and check. 7–x = 21 21 is not a power of 7, so take the log of both sides. log 7–x = log 21 Apply the Power Property of Logarithms. (–x)log 7 = log 21 Divide both sides by log 7.

  9. log15 3x = log2 Check It Out! Example 1c Solve and check. 23x = 15 15 is not a power of 2, so take the log of both sides. log23x = log15 Apply the Power Property of Logarithms. (3x)log 2 = log15 Divide both sides by log 2, then divide both sides by 3. x ≈ 1.302

  10. 1 7 6 12 2x – 1= x= Example 3A: Solving Logarithmic Equations Solve. log6(2x – 1) = –1 6log6 (2x –1) = 6–1 Use 6 as the base for both sides. Use inverse properties to remove 6 to the log base 6. Simplify.

  11. 100 100 x + 1 x + 1 log4( ) = 1 ( ) 100 x + 1 4log4 = 41 = 4 Example 3B: Solving Logarithmic Equations Solve. log4100 – log4(x + 1) = 1 Write as a quotient. Use 4 as the base for both sides. Use inverse properties on the left side. x= 24

  12. Example 3C: Solving Logarithmic Equations Solve. log5x 4 = 8 4log5x = 8 Power Property of Logarithms. log5x = 2 Divide both sides by 4 to isolate log5x. x = 52 Definition of a logarithm. x= 25

  13. log12x(x +1) 12 = 121 Example 3D: Solving Logarithmic Equations Solve. log12x+ log12(x + 1) = 1 Product Property of Logarithms. log12x(x + 1) = 1 Exponential form. x(x + 1) = 12 Use the inverse properties.

  14. Example 3 Continued x2 + x – 12 = 0 Multiply and collect terms. (x – 3)(x+ 4) = 0 Factor. Set each of the factors equal to zero. x – 3 = 0 or x+ 4 = 0 x = 3 or x= –4 Solve. Check Check both solutions in the original equation. log12x+ log12(x +1) = 1 log12x+ log12(x +1) = 1 x log123+ log12(3 + 1) 1 log12( –4) + log12(–4 +1) 1 log123 + log124 1 log12( –4) is undefined. log1212 1 1 1  The solution is x = 3.

  15. Check It Out! Example 3a Solve. 3 = log 8 + 3log x 3 = log 8 + 3log x 3 = log 8 + log x3 Power Property of Logarithms. 3 = log (8x3) Product Property of Logarithms. 103 = 10log (8x3) Use 10 as the base for both sides. 1000 = 8x3 Use inverse properties on the right side. 125 = x3 5 = x

  16. x 4 2log() = 0 x 4 x 4 2(10log ) = 100 2( ) = 1 Check It Out! Example 3b Solve. 2log x– log 4 = 0 Write as a quotient. Use 10 as the base for both sides. Use inverse properties on the left side. x= 2

  17. Example 4A: Using Tables and Graphs to Solve Exponential and Logarithmic Equations and Inequalities Use a table and graph to solve 2x + 1 > 8192x. Use a graphing calculator. Enter 2^(x + 1)as Y1 and8192xas Y2. In the graph, find the x-value at the point of intersection. In the table, find the x-values where Y1 is greater than Y2. The solution set is {x | x > 16}.

  18. 5 x = 3 Lesson Quiz: Part I Solve. 1. 43x–1 = 8x+1 x ≈ 1.86 2. 32x–1 =20 x = 68 3. log7(5x + 3) = 3 4. log(3x + 1) – log 4 = 2 x = 133 5. log4(x – 1) + log4(3x – 1) = 2 x = 3

More Related