130 likes | 345 Views
Suspension Polymerization. Advantages Disadvantages * Heat control simple * Contamination with * Product directly stabilizing agent usable * Coagulation possible * Easy handling Applications Ion-exchange resins, polystyrene foam, PVC.
E N D
Suspension Polymerization Advantages Disadvantages * Heat control simple * Contamination with * Product directly stabilizing agent usable * Coagulation possible * Easy handling Applications Ion-exchange resins, polystyrene foam, PVC Qualitative description of emulsion polymerization kinetics
Qualitative description of emulsion polymerization kinetics Antonio de Herrera Tordesillas described an application of natural latex in 1601. A ball game as part of a religious rite.
Advantages Disadvantages * Low viscosity even * Contamination of at high solid contents products with additives * Independent control * More complicated of rate and in case of water molecular-weight soluble monomers * Direct application of complete reactor contents Emulsion Polymerization
Applications of latices Paints-Construction Glues-Adhesives * Paints / rough casting / heat insulation * Wood glues / adhesives for furniture laminates * Elastomeric coatings / primers * Additives for cement and concrete * Adhesives for floor-, wall- and ceiling materials * Anti corrosives / wood coatings * Industrial coatings * Packaging- and lamination glues * Rheology modifiers * Adhesion- and contact glues * Roof coatings * Leather fibres * Fillers and levelling powders * Glues in powder form * Varnishes * Structural Adhesives * Contact Adhesives Textiles Paper * Carpet backside coatings * Binders for rubbed paper * Fleece binder * Boxes and wallpaper * Spunbond / textile coating * Equipment of technical textiles Other * Pressure binder /flocculating glue * Teflon * Elastomers Source: Clariant
Objective Process How to influence ? Molecular Microstructure & Morphology Properties What is the relation ?
Glasovergangstemperaturen Tg [°C] Polyvinylacetaat + 29 Polyvinylpropionaat + 7 Poly(VeoVa 10) - 2 Polyvinylidenchloride + 80 Polyacrylonitril + 100 Polyethyleen (-125) Polystyreen + 100 Polymethylmethacrylaat +105 Poly 2-ethyl-hexylacrylaat -85 Poly n-butylacrylaat -54 Polyacrylzuur (kristallijn) + 166 Poly methacrylzuur + 185 Poly acrylamide (kristallijn) + 153 Polyhydroxy-ethyl-methacrylaat + 55
Glasovergangstemperaturen Monomer: Tg[°C] • Methyl - Acrylaat + 8 • Ethyl - Acrylaat - 22 • n-Butyl - Acrylaat - 54 • 2-Ethylhexyl - Acrylaat - 85 • Methyl - Methacrylaat + 105 • Ethyl - Methacrylaat + 65 • n-Butyl - Methacrylaat + 20 • 2-Ethylhexyl - Methacrylaat - 10 • Decyl - Methacrylaat - 70 • n-Butyl - Acrylaat - 54 • iso-Butyl - Acrylaat - 43 • sek.-Butyl - Acrylaat - 20 • tert.-Butyl - Acrylaat + 41 • n-Butyl - Methacrylaat + 20 • iso-Butyl - Methacrylaat + 48 • sek.-Butyl - Methacrylaat + 60 • tert.-Butyl - Methacrylaat + 107
Zachte monomeren Acrylzuuresters Butadieen Ethyleen Versaticsäurevinylester Malein- und Fumaarzuur-esters met C > 4 • Geladen monomeren • Acrylzuur • Methacrylzuur • Maleinezuur • Fumaarzuur • Natrium-Etheensulfonaat • Natrium-Etheenphosphaat Vernettende monomeren Polyvinyl- und Polyallyl- verbindingen N-Methylol-verbindingen Aktieve halogeenhoudendeverbindingen Monomeer – Indeling in groepen Harde monomeren Styreen Methylmethacrylaat Vinylchloride (Vinylacetaat) (Vinylpropionaat) Acrylonitril
De 3M aspecten van de PE proef. Links de toepassing, een beker (macro), met in het midden de morfologie van dit polymeer (meso). Rechts de atomaire ketens zoals die in het polymeer voorkomen (micro).