1 / 45

CHAOS

CHAOS. Lucy Calvillo Michael Dinse John Donich Elizabeth Gutierrez Maria Uribe. Problem Statement. Consider the function: f ( x )= a x (1- x ) on the interval [0,1] where a is a real number 1 < a < 5 This function is also known as the logistic function.

jdaphne
Download Presentation

CHAOS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CHAOS Lucy Calvillo Michael Dinse John Donich Elizabeth Gutierrez Maria Uribe

  2. Problem Statement • Consider the function: f(x)=ax(1-x) on the interval [0,1] where a is a real number 1 < a < 5 • This function is also known as the logistic function.

  3. Logistic Function and the unrestricted growth function • The model for unrestricted growth is very simple: f(x) = ax • For an example using flies this means that in each generation there will be a times as many flies as in the previous generation.

  4. Logistic Function and the restricted growth function • In 1845 P.F Verhulst derived a model of restricted growth. • The model is derived by supposing the factor a decreases as the number x increases. • The biggest population that the environment will support is x=1. • For our example if there are x insects then 1-x is a measure of the space nature permits for population growth. • Consequently replacing a by a(1-x) transforms the model to: f(x) = ax(1- x) which is the initial equation we were given.

  5. Problem Statement • Compute the fixed points for the function: f(x)=ax(1-x) on the interval [0,1] where a is a real number 1 < a < 5

  6. Fixed Points • A fixed point is a point which does not change upon application of a map, system of differential equations, etc. • The fixed points can be obtained graphically as the points of intersection of the curve f(x) and the line y = x. • The fixed points of the logistic function are 0 and (a -1) / a.

  7. Problem Statement • Compute the first twenty values of the sequence given by: xn+1= f(xn) Using the starting values of x0=0.3 x0=0.6 x0=0.9 For a= 1.5, 2.1, 2.8, 3.1 & 3.6

  8. Iterations • Iteration: making repititions, iterations are functions that are repeated. For instance the first iteration yields: xn+1 = f(xn) f(x) = ax (1-x) x1 = f(0.3) x1 = (1.5)(0.3)(1-0.3) x1 = 0.315 • Iterations allowed us to compare the convergence behavior.

  9. a= 1.5 x0=0.3 0.3 0.315 0.3236625 0.328357629 0.330808345 0.332061276 0.332694877 0.333013494 0.33317326 0.333253258 0.333293286 0.333313307 0.33332332 0.333328326 0.33333083 0.333332082 0.333332707 0.33333302 0.333333177 0.333333255 0.333333294

  10. a= 1.5 x0=0.6 0.6 0.36 0.3456 0.339241 0.336235 0.334771 0.334049 0.333691 0.333512 0.333422 0.333378 0.333356 0.333344 0.333339 0.333336 0.333335 0.333334 0.333334 0.333334 0.333333 0.333333

  11. a = 1.5 x0=0.9 0.9 0.135 0.175163 0.216721 0.254629 0.28469 0.305462 0.318233 0.325441 0.329294 0.331289 0.332305 0.332818 0.333075 0.333204 0.333269 0.333301 0.333317 0.333325 0.333329 0.333331

  12. a = 2.1 x0=0.3 0.3 0.441 0.51769 0.524343 0.523756 0.523815 0.523809 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381

  13. a = 2.1 x0=0.6 0.6 0.504 0.524966 0.523691 0.523821 0.523808 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381

  14. a = 2.1 x0=0.9 0.9 0.189 0.321886 0.458378 0.521362 0.524042 0.523786 0.523812 0.523809 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381

  15. a = 2.8 x0=0.3 0.3 0.588 0.678317 0.610969 0.665521 0.623288 0.65744 0.630595 0.652246 0.6351 0.648895 0.637925 0.646735 0.639713 0.645345 0.64085 0.644452 0.641574 0.643879 0.642037 0.643511

  16. a = 2.8 x0=0.6 0.6 0.672 0.617165 0.661563 0.626913 0.654901 0.632816 0.650608 0.636489 0.647838 0.638803 0.646055 0.64027 0.644908 0.641205 0.644171 0.641801 0.643699 0.642182 0.643396 0.642425

  17. a = 2.8 x0=0.9 0.9 0.252 0.527789 0.697838 0.590409 0.677114 0.612166 0.664773 0.62398 0.656961 0.631017 0.651937 0.635363 0.648695 0.638091 0.646606 0.639818 0.645262 0.640917 0.644399 0.641617

  18. a = 3.1 x0=0.3 0.3 0.651 0.704317 0.645589 0.709292 0.639211 0.714923 0.631805 0.721145 0.623394 0.727799 0.614133 0.734618 0.604358 0.741239 0.594592 0.747262 0.58547 0.752354 0.577584 0.75634

  19. a = 3.1 x0=0.6 0.6 0.744 0.590438 0.749645 0.5818 0.754257 0.574595 0.75775 0.569051 0.760219 0.565087 0.761868 0.562419 0.762922 0.560703 0.763577 0.559634 0.763976 0.558982 0.764215 0.55859

  20. a = 3.1 x0=0.9 0.9 0.279 0.623593 0.727647 0.614348 0.734466 0.60458 0.741095 0.594806 0.747136 0.585663 0.752252 0.577744 0.756263 0.571421 0.759187 0.566748 0.761189 0.56352 0.762492 0.561403

  21. a = 3.6 x0=0.3 0.3 0.756 0.66407 0.803091 0.569288 0.882717 0.3727 0.841661 0.479763 0.898526 0.328238 0.793792 0.58927 0.871311 0.403661 0.866588 0.416209 0.874724 0.394494 0.859926 0.433631

  22. a = 3.6 x0=0.6 0.6 0.864 0.423014 0.878664 0.38381 0.8514 0.455466 0.89286 0.344379 0.812816 0.547727 0.8918 0.347375 0.81614 0.5402 0.894182 0.340633 0.808568 0.557228 0.88821 0.357455

  23. a = 3.6 x0=0.9 0.9 0.324 0.788486 0.600392 0.863717 0.423756 0.879072 0.382695 0.850462 0.457835 0.893599 0.342286 0.810455 0.553025 0.889878 0.352782 0.821977 0.526792 0.897416 0.331418 0.797689

  24. Problem Statement • Compute f’(x) and explain the behavior

  25. f(x) = ax(1-x) f(x) = ax - ax2 f ’(x) = a - 2ax f ’(x) = a (1 - 2x) By evaluating the derivative at the fixed point (x*) it can be determined • Where f ’(x*) = m, for • m < -1, the iterative path is repelled and spirals away from fixed point • -1 < m, the iterative path is attracted and spirals into the fixed point • 0 < m <1, the iterative path is attracted and staircases into the fixed point • m >1, the iterative path is repelled and staircases away

  26. Problem Statement • Consider g(x) = f(f(x)) and compute all fixed points.

  27. g(x) = f(f(x)) • f(x)=ax - ax2 f(f(x))=a(ax - ax2) - a(ax - ax2)2 g(x) = f(f(x)) g(x) = a(ax - ax2) - a(ax - ax2)2 • The fixed points of the function are: 0 (a - 1) / a 1/2+ 1/2a + 1/2a (a2- 2a - 3)0.5 • The first two fixed points are the same as those computed for the general logistic function. • The two new fixed points are the numerical values of the orbit of convergence.

  28. Problem Statement • Investigate the sequence xn+1 = g(xn) for the values of: Using the starting values of x0=0.3 x0=0.6 x0=0.9 For a= 1.5, 2.1, 2.8, 3.1 & 3.6

  29. a= 1.5 x0=0.3 0.3 0.3236625 0.330808345 0.332694877 0.33317326 0.333293286 0.33332332 0.33333083 0.333332707 0.333333177 0.333333294 0.333333324 0.333333331 0.333333333 0.333333333 0.333333333 0.333333333 0.333333333 0.333333333 0.333333333 0.333333333

  30. a= 1.5 x0=0.6 0.6 0.3456 0.336235 0.334049 0.333512 0.333378 0.333344 0.333336 0.333334 0.333334 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333

  31. a = 1.5 x0=0.9 0.9 0.175163 0.254629 0.305462 0.325441 0.331289 0.332818 0.333204 0.333301 0.333325 0.333331 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333

  32. a = 2.1 x0=0.3 0.3 0.51769 0.523756 0.523809 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381

  33. a = 2.1 x0=0.6 0.6 0.524966 0.523821 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381

  34. a = 2.1 x0=0.9 0.9 0.321886 0.521362 0.523786 0.523809 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381 0.52381

  35. a = 2.8 x0=0.3 0.3 0.678317 0.665521 0.65744 0.652246 0.648895 0.646735 0.645345 0.644452 0.643879 0.643511 0.643276 0.643125 0.643029 0.642967 0.642927 0.642902 0.642886 0.642876 0.642869 0.642865

  36. a = 2.8 x0=0.6 0.6 0.617165 0.626913 0.632816 0.636489 0.638803 0.64027 0.641205 0.641801 0.642182 0.642425 0.642581 0.64268 0.642744 0.642785 0.642811 0.642827 0.642838 0.642845 0.642849 0.642852

  37. a = 2.8 x0=0.9 0.9 0.527789 0.590409 0.612166 0.62398 0.631017 0.635363 0.638091 0.639818 0.640917 0.641617 0.642064 0.64235 0.642533 0.64265 0.642724 0.642772 0.642803 0.642822 0.642835 0.642843

  38. a = 3.1 x0=0.3 0.3 0.704317 0.709292 0.714923 0.721145 0.727799 0.734618 0.741239 0.747262 0.752354 0.75634 0.759241 0.761225 0.762515 0.763326 0.763824 0.764124 0.764304 0.764411 0.764475 0.764512

  39. a = 3.1 x0=0.6 0.6 0.590438 0.5818 0.574595 0.569051 0.565087 0.562419 0.560703 0.559634 0.558982 0.55859 0.558355 0.558216 0.558133 0.558085 0.558056 0.558039 0.558029 0.558023 0.558019 0.558017

  40. a = 3.1 x0=0.9 0.9 0.623593 0.614348 0.60458 0.594806 0.585663 0.577744 0.571421 0.566748 0.56352 0.561403 0.560067 0.559245 0.558748 0.558449 0.558272 0.558166 0.558104 0.558067 0.558045 0.558033

  41. a = 3.6 x0=0.3 0.3 0.66407 0.569288 0.3727 0.479763 0.328238 0.58927 0.403661 0.416209 0.394494 0.433631 0.368764 0.488727 0.325317 0.596929 0.417292 0.392741 0.437104 0.364284 0.499137 0.324008

  42. a = 3.6 x0=0.6 0.6 0.423014 0.38381 0.455466 0.344379 0.547727 0.347375 0.5402 0.340633 0.557228 0.357455 0.515405 0.326458 0.593934 0.411851 0.401746 0.419743 0.388846 0.444977 0.354961 0.521457

  43. a = 3.6 x0=0.9 0.9 0.788486 0.863717 0.879072 0.850462 0.893599 0.810455 0.889878 0.821977 0.897416 0.797689 0.876396 0.856419 0.88817 0.826966 0.899175 0.791473 0.868084 0.87228 0.864764 0.877538

  44. Conclusions

  45. Work Cited http://www.ukmail.org/~oswin/logistic.html http://www.cut-the- knot.com/blue/chaos.shtml

More Related