330 likes | 415 Views
Changes for 2 nd Semester: Two separate interactive notebooks (Notes & Scholar Work) No intervention/reteach week Retakes will be taken after school on determined dates. All assignments & notes must be complete Crunchymath.weebly.com.
E N D
Changes for 2nd Semester: • Two separate interactive notebooks (Notes & Scholar Work) • No intervention/reteach week • Retakes will be taken after school on determined dates. All assignments & notes must be complete • Crunchymath.weebly.com
A tight end scored 6 touchdowns in 14 games. Find the ratio of touchdowns per game. • 2. In a schedule of 6 classes, Marta has 2 elective classes. What is the ratio of elective to non-elective classes in Marta’s schedule. • 3. An artist in Portland, Oregon, makes bronze sculptures of dogs. The ratio of the height of a sculpture to the actual height of the dog is 2:3. If the height of the sculpture is 14 inches, find the height of the dog. Opening Activity
D. N. A. Solve the following equations.
Geometry Chapter 7: Proportions and SimilarityChapter 7 Test on Friday 1/18Retake 2/7 or 2/8 Chapter 7-1: Proportions
ratio • Write ratios. • proportion • cross products • extremes • means • Use properties of proportions. Reinforcement of CA Standard 6NS1.3 Use proportions to solve problems (e.g., determine the value of N if 4/7 = N/21, find the length of a side of a polygon similar to a known polygon). Use cross-multiplication as a method for solving such problems, understanding it as the multiplication of both sides of an equation by a multiplicative inverse. (Key) Lesson 1 MI/Vocab
Prerequisite Algebra Review • Solve the following equation: Multiply both sides by the reciprocal of the fraction.
Prerequisite Algebra Review (cont.) • Solve the following equation: 5 2
Prerequisite Algebra Review (cont.) • Solve the following equation: 5
Example: The ratio of 5 and 7 can be written as5:7or as the fractionand we say the ratio is“five to seven”. Ratios A comparison of two quantities using division.
Example # 2: • Gary has a bag with 4 marbles, 3 books, 5 pencils, and 2 erasers. a. What is the ratio of pencils to books? 5:3 b. What is the ratio of marbles to the total number of items in the bag? 4:14 2:7 (Must be reduced!)
Write a Ratio SCHOOL The total number of students who participate in sports programs at Central High School is 500. The total number of students in the school is 2000. Find the athlete-to-student ratio to the nearest tenth. To find this ratio, divide the number of athletes by the total number of students. Answer: The athlete-to-student ratio is 1:4. Lesson 1 Ex1
A tight end scored 6 touchdowns in 14 games. Find the ratio of touchdowns per game. • In a schedule of 6 classes, Marta has 2 elective classes. What is the ratio of elective to non-elective classes in Marta’s schedule. • An artist in Portland, Oregon, makes bronze sculptures of dogs. The ratio of the height of a sculpture to the actual height of the dog is 2:3. If the height of the sculpture is 14 inches, find the height of the dog.
Extremes Means Proportions • If two ratios are equal, they can be written as a proportion.
Proportion Practice • Which proportions are not correct? 48 = 48 48 = 48 24 96 48 = 48 32 72 48 = 48
Proportion Practice • Solve the following proportions Check your answer!
A B D C Using Ratios Example #1 • The Perimeter of a rectangle is 60 cm. The ratio of AB:BC is 3:2. Find the length and width of the rectangle. 3:2 is in lowest terms. AB:BC could be 3:2, 6:4, 9:6, 12:8, etc. AB = 3x BC = 2x Perimeter = l + w+ l + w 60 = 3x + 2x + 3x + 2x 60 = 10x x = 6 L = 3(6) = 18 W = 2(6) = 12
Find the measures of the sides of each triangle. 12. The ratio of the measures of the sides of a triangle is 3:5:7, and its perimeter is 450 centimeters. 13. The ratio of the measures of the sides of a triangle is 5:6:9, and its perimeter is 220 meters. 14. The ratio of the measures of the sides of a triangle is 4:6:8, and its perimeter is 126 feet. Find the measures of the angles in each triangle. 15) The ratio of the measures of the angles is 4:5:6.
B A 4x C 2x 3x Using Ratios Example #2 mA+ mB+ mC = 180o Triangle Sum Thm. 2x + 3x + 4x = 180o 9x = 180o x = 20o mA = 40o mB = 60o mC = 80o • The angle measures in ABC are in the extendedratio of 2:3:4. Find the measure of the three angles.
Using Ratios Example #3 • The ratio of the measures of the three side lengths of a ABC are , and the perimeter is 19 m. Find the measure of each side of the triangle. Change the fractions into common denominators? Multiply everything by the common denominator.
Extended Ratios in Triangles In a triangle, the ratio of the measures of three sides is 5:12:13, and the perimeter is 90 centimeters. Find the measure of the shortest side of the triangle.A13 cmB15 cmC38 cmD39 cm The shortest side is 15 centimeters. The answer is B. Check Add the lengths of the sides to make sure that the perimeter is 90. Lesson 1 Ex2
In a triangle, the ratio of the measures of three sides is 3:4:5, and the perimeter is 42 feet. Find the measure of the longest side of the triangle. A. 10.5 ft B. 14 ft C. 17.5 ft D. 37 ft Lesson 1 CYP2
Proportion Properties (The names are not important, the ideas are!!!) Cross Product Property—The product of the means equals the product of the extremes.
Solve Proportions by Using Cross Products B. Cross products Simplify. Add 30 to each side. Divide each side by 24. Answer: –2 Lesson 1 Ex3
A. A. 0.65 B. 4.5 C. –14.5 D. 147 Lesson 1 CYP3
B. • A • B • C • D A. 9 B. 8.9 C. 3 D. 1.8 Lesson 1 CYP3
Solve Problems Using Proportions TRAINS A boxcar on a train has a length of 40 feet and a width of 9 feet. A scale model is made with a length of 16 inches. Find the width of the model. Substitution Cross products Multiply. Divide each side by 40. Answer: The width of the model is 3.6 inches. Lesson 1 Ex4
Solve Problems Using Proportions Substitution Cross products Multiply. Divide each side by 40. Answer: The width of the model is 3.6 inches. Lesson 1 Ex4
Proportion Practice #2 • A picture of a tree is shown, the actual tree is 84 in. tall. How wide is the tree?
Two large cylindrical containers are in proportion. The height of the larger container is 25 meters with a diameter of 8 meters. The height of the smaller container is 7 meters. Find the diameter of the smaller container. A. 0.6 m B. 2.24 m C. 2.52 m D. 28.57 m Lesson 1 CYP4
Homework Chapter 8.1 Pg 383: 2 – 9, 12 – 26,56 – 61, 63, 64