1 / 32

PPL

PPL. Sequence Interface. Midterm 2011. (define make-tree ( λ ( value children) ( λ ( sel ) ( sel value children)))) (define root-value ( λ ( tree) (tree ( λ ( value children) (value))))) (define tree-children ( λ ( tree) (tree ( λ ( value children)

jeanne
Download Presentation

PPL

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PPL Sequence Interface

  2. Midterm 2011

  3. (define make-tree (λ (value children) (λ (sel) (sel value children)))) (define root-value (λ (tree) (tree (λ (value children) (value))))) (define tree-children (λ (tree) (tree (λ (value children) (children)))))

  4. The Sequence Interface • OOP languages support collections • FP is better: sequence operations • Java 8 new feature is sequence operations… Scheme had it for years!

  5. What is Sequence Interface? • ADT for lists • In other words: a barrier between clients running sequence applications and their implementations • Abstracts-away element by element manipulation

  6. Map • Applies a procedure to all elements of a list. Returns a list as a result ;Signature: map(proc,sequence) ;Purpose: Apply ’proc’ to all ’sequence’. ;Type: [[T1 -> T2]*LIST(T1) -> LIST(T2)] ;Examples: ;(map abs (list -10 2.5 -11.6 17)) ; ==> (10 2.5 11.6 17) ;(map (lambda (x) (* x x)) (list 1 2 3 4)) ; ==> (1 4 9 16) ;Post-condition: For all i=1..length(sequence): resulti = proc(sequencei)

  7. Map Example: scale-list Scaling list of numbers by a factor ;Signature: scale-list(items,factor) ;Purpose: Scaling elements of a number list by a factor. ;Type: [LIST(Number)*Number -> LIST(Number)] > (scale-list (list 1 2 3 4 5) 10) (10 20 30 40 50)

  8. Implementation of scale-list No Map Map (define scale-list (lambda (items factor) (map (lambda (x) (* x factor)) items)) (define scale-list (lambda (items factor) (if (null? items) (list) (cons (* (car items) factor) (scale-list (cdr items) factor)))))

  9. Map Example: scale-tree Mapping over hierarchical lists >(scale-tree (list 1 (list 2 (list 3 4) 5) (list 6 7)) 10) (10 (20 (30 40) 50) (60 70))

  10. Implementation of scale-tree No Map Map (define scale-tree (lambda (tree factor) (map (lambda (sub-tree) (if (list? sub-tree) (scale-tree sub-tree factor) (* sub-tree factor))) tree))) (define scale-tree (lambda (tree factor) (cond ((null? tree) (list)) ((not (list? tree)) (* tree factor)) (else (cons (scale-tree (car tree) factor) (scale-tree (cdr tree) factor))))))

  11. Map in Java List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7); //Old way: for(Integer n: list) { System.out.println(n); } //New way: list.forEach(n -> System.out.println(n)); //Scheme (map list (lambda(n) (display n))

  12. Implementation of Map ;Signature: map(proc,items) ;Purpose: Apply ’proc’ to all ’items’. ;Type: [[T1 -> T2]*LIST(T1) -> LIST(T2)] (define map (lambda (proc items) (if (null? items) (list) (cons (proc (car items)) (map proc (cdr items))))))

  13. A More General Map • So far, the procedure can get only a single parameter: an item in the list • Map in Scheme is more general: n-ary procedure and n lists (with same length) Example: > (map + (list 1 2 3) (list 40 50 60) (list 700 800 900)) (741 852 963)

  14. Haskell Curry

  15. Function Currying: Reminder • Technique for turning a function with n parameters to n functions with a single parameter • Good for partial evaluation

  16. Currying ;Type: [Number*Number -> Number] (define add (λ (x y) (+ x y))) ;Type: [Number -> [Number -> Number]] (define c-add (λ (x) (λ (y) (add x y)))) (define add3 (c-add 3)) (add3 4) 7

  17. Why Currying? (define add-fib (lambda (x y) (+ (fib x) y))) (define c-add-fib (lambda (x) (lambda (y) (+ (fib x) y)))) (define c-add-fib (lambda (x) (let ((fib-x (fib x))) (lambda (y) (+ fib-x y)))))

  18. Curried Map Delayed List Naïve Version: ;Signature: c-map-proc(proc) ;Purpose: Create a delayed map for ’proc’. ;Type: [[T1 -> T2] -> [LIST(T1) -> LIST(T2)]] (define c-map-proc (lambda (proc) (lambda (lst) (if (empty? lst) lst (cons (proc (car lst)) ((c-map-proc proc) (cdrlst)))))))

  19. Curried Map – delay the list (define c-map-proc (lambda (proc) (letrec ((iter (lambda (lst) (if (empty? lst) lst (cons (proc (car lst)) (iter (cdrlst))))))) iter)))

  20. Curried Map – delay the proc ;Signature: c-map-list(lst) ;Purpose: Create a delayed map for ’lst’. ;Type: [LIST(T1) -> [[T1 -> T2] -> LIST(T2)]] (define c-map-list (lambda (lst) (if (empty? lst) (lambda (proc) lst) ;c-map-list returns a procedure (let ((mapped-cdr (c-map-list (cdrlst)))) ;Inductive Currying (lambda (proc) (cons (proc (car lst)) (mapped-cdr proc)))))))

  21. Filter Homogenous List Signature: filter(predicate, sequence) Purpose: return a list of all sequence elements that satisfy the predicate Type: [[T-> Boolean]*LIST(T) -> LIST(T)] Example: (filter odd? (list 1 2 3 4 5)) ==> (1 3 5) Post-condition: result = sequence - {el|el∈sequence and not(predicate(el))}``

  22. Accumulate Procedure Application Signature: accumulate(op,initial,sequence) Purpose: Accumulate by ’op’ all sequence elements, starting (ending) with ’initial’ Type: [[T1*T2 -> T2]*T2*LIST(T1) -> T2] Examples: (accumulate + 0 (list 1 2 3 4 5)) ==> 15 (accumulate * 1 (list 1 2 3 4 5)) ==> 120

  23. Interval Enumeration Signature: enumerate-interval(low, high) Purpose: List all integers within an interval: Type: [Number*Number -> LIST(Number)] Example: (enumerate-interval 2 7) ==> (2 3 4 5 6 7) Pre-condition: high > low Post-condition: result = (low low+1 ... high)

  24. Enumerate Tree Signature: enumerate-tree(tree) Purpose: List all leaves of a number tree Type: [LIST union T -> LIST(Number)] Example: (enumerate-tree (list 1 (list 2 (list 3 4)) 5)) ==> (1 2 3 4 5) Post-condition: result = flatten(tree)

  25. Sum-odd-squares ;Signature: sum-odd-squares(tree) ;Purpose: return the sum of all odd square leaves ;Type: [LIST -> Number] (define sum-odd-squares (lambda (tree) (accumulate + 0 (map square (filter odd? (enumerate-tree tree))))))

  26. Even Fibonacci Numbers Without sequence operations: With sequence operations: (define even-fibs (lambda (n) (accumulate cons (list) (filter even? (map fib (enumerate-interval 0 n)))))) (define even-fibs (lambda (n) (letrec ((next (lambda(k) (if (> k n) (list) (let ((f (fib k))) (if (even? f) (cons f (next (+ k 1))) (next (+ k 1)))))))) (next 0))))

  27. Filter implementation ;; Signature: filter(predicate, sequence) ;; Purpose: return a list of all sequence elements that satisfy the predicate ;; Type: [[T-> Boolean]*LIST(T) -> LIST(T)] (define filter (lambda (predicate sequence) (cond ((null? sequence) sequence) ((predicate (car sequence)) (cons (car sequence) (filter predicate (cdr sequence)))) (else (filter predicate (cdr sequence))))))

  28. Accumulate Implementation ;;Signature: accumulate(op,initial,sequence) ;;Purpose: Accumulate by ’op’ all sequence elements, starting (ending) ;;with ’initial’ ;;Type: [[T1*T2 -> T2]*T2*LIST(T1) -> T2] (define accumulate (lambda (op initial sequence) (if (null? sequence) initial (op (car sequence) (accumulate op initial (cdr sequence))))))

  29. Enumerate-interval Implementation ;;Signature: enumerate-interval(low, high) ;;Purpose: List all integers within an interval: ;;Type: [Number*Number -> LIST(Number)] (define enumerate-interval (lambda (low high) (if (> low high) (list) (cons low (enumerate-interval (+ low 1) high)))))

  30. Enumerate-Tree Implementation ;;Signature: enumerate-tree(tree) ;;Purpose: List all leaves of a number tree ;;Type: [LIST union T -> LIST(Number)] (define enumerate-tree (lambda (tree) (cond ((null? tree) (tree)) ((not (list? tree)) (list tree)) (else (append (enumerate-tree (car tree)) (enumerate-tree (cdr tree)))))))

More Related