1 / 46

Section 7.2

Section 7.2. How Can We Construct a Confidence Interval to Estimate a Population Proportion?. Finding the 95% Confidence Interval for a Population Proportion. We symbolize a population proportion by p The point estimate of the population proportion is the sample proportion

jenn
Download Presentation

Section 7.2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Section 7.2 How Can We Construct a Confidence Interval to Estimate a Population Proportion?

  2. Finding the 95% Confidence Interval for a Population Proportion • We symbolize a population proportion by p • The point estimate of the population proportion is the sample proportion • We symbolize the sample proportion by

  3. Finding the 95% Confidence Interval for a Population Proportion • A 95% confidence interval uses a margin of error = 1.96(standard errors) • [point estimate ± margin of error] =

  4. Finding the 95% Confidence Interval for a Population Proportion • The exact standard error of a sample proportion equals: • This formula depends on the unknown population proportion, p • In practice, we don’t know p, and we need to estimate the standard error

  5. Finding the 95% Confidence Interval for a Population Proportion • In practice, we use an estimated standard error:

  6. Finding the 95% Confidence Interval for a Population Proportion • A 95% confidence interval for a population proportion p is:

  7. Example: Would You Pay Higher Prices to Protect the Environment? • In 2000, the GSS asked: “Are you willing to pay much higher prices in order to protect the environment?” • Of n = 1154 respondents, 518 were willing to do so

  8. Example: Would You Pay Higher Prices to Protect the Environment? • Find and interpret a 95% confidence interval for the population proportion of adult Americans willing to do so at the time of the survey

  9. Example: Would You Pay Higher Prices to Protect the Environment?

  10. Sample Size Needed for Large-Sample Confidence Interval for a Proportion • For the 95% confidence interval for a proportion p to be valid, you should have at least 15 successes and 15 failures:

  11. “95% Confidence” • With probability 0.95, a sample proportion value occurs such that the confidence interval contains the population proportion, p • With probability 0.05, the method produces a confidence interval that misses p

  12. How Can We Use Confidence Levels Other than 95%? • In practice, the confidence level 0.95 is the most common choice • But, some applications require greater confidence • To increase the chance of a correct inference, we use a larger confidence level, such as 0.99

  13. A 99% Confidence Interval for p

  14. Different Confidence Levels

  15. Different Confidence Levels • In using confidence intervals, we must compromise between the desired margin of error and the desired confidence of a correct inference • As the desired confidence level increases, the margin of error gets larger

  16. What is the Error Probability for the Confidence Interval Method? • The general formula for the confidence interval for a population proportion is: Sample proportion ± (z-score)(std. error) which in symbols is

  17. What is the Error Probability for the Confidence Interval Method?

  18. Summary: Confidence Interval for a Population Proportion, p • A confidence interval for a population proportion p is:

  19. Summary: Effects of Confidence Level and Sample Size on Margin of Error • The margin of error for a confidence interval: • Increases as the confidence level increases • Decreases as the sample size increases

  20. What Does It Mean to Say that We Have “95% Confidence”? • If we used the 95% confidence interval method to estimate many population proportions, then in the long run about 95% of those intervals would give correct results, containing the population proportion

  21. Section 7.3 How Can We Construct a Confidence Interval To Estimate a Population Mean?

  22. How to Construct a Confidence Interval for a Population Mean • Point estimate ± margin of error • The sample mean is the point estimate of the population mean • The exact standard error of the sample mean is σ/ • In practice, we estimate σ by the sample standard deviation, s

  23. How to Construct a Confidence Interval for a Population Mean • For large n… • and also • For small n from an underlying population that is normal… • The confidence interval for the population mean is:

  24. How to Construct a Confidence Interval for a Population Mean • In practice, we don’t know the population standard deviation • Substituting the sample standard deviation s for σ to get se = s/ introduces extra error • To account for this increased error, we replace the z-score by a slightly larger score, the t-score

  25. How to Construct a Confidence Interval for a Population Mean • In practice, we estimate the standard error of the sample mean by se = s/ • Then, we multiply se by a t-score from the t-distribution to get the margin of error for a confidence interval for the population mean

  26. Properties of the t-distribution • The t-distribution is bell shaped and symmetric about 0 • The probabilities depend on the degrees of freedom, df • The t-distribution has thicker tails and is more spread out than the standard normal distribution

  27. t-Distribution

  28. Summary: 95% Confidence Interval for a Population Mean • A 95% confidence interval for the population mean µ is: • To use this method, you need: • Data obtained by randomization • An approximately normal population distribution

  29. Example: eBay Auctions of Palm Handheld Computers • Do you tend to get a higher, or a lower, price if you give bidders the “buy-it-now” option?

  30. Example: eBay Auctions of Palm Handheld Computers • Consider some data from sales of the Palm M515 PDA (personal digital assistant) • During the first week of May 2003, 25 of these handheld computers were auctioned off, 7 of which had the “buy-it-now” option

  31. Example: eBay Auctions of Palm Handheld Computers • “Buy-it-now” option: 235 225 225 240 250 250 210 • Bidding only: 250 249 255 200 199 240 228 255 232 246 210 178 246 240 245 225 246 225

  32. Example: eBay Auctions of Palm Handheld Computers • Summary of selling prices for the two types of auctions: buy_now N Mean StDev Minimum Q1 Median Q3 no 18 231.61 21.94 178.00 221.25 240.00 246.75 yes 7 233.57 14.64 210.00 225.00 235.00 250.00 buy_now Maximum no 255.00 yes 250.00

  33. Example: eBay Auctions of Palm Handheld Computers

  34. Example: eBay Auctions of Palm Handheld Computers • To construct a confidence interval using the t-distribution, we must assume a random sample from an approximately normal population of selling prices

  35. Example: eBay Auctions of Palm Handheld Computers • Let µ denote the population mean for the “buy-it-now” option • The estimate of µ is the sample mean: x = $233.57 • The sample standard deviation is: s = $14.64

  36. Example: eBay Auctions of Palm Handheld Computers • The 95% confidence interval for the “buy-it-now” option is: • which is 233.57 ± 13.54 or (220.03, 247.11)

  37. Example: eBay Auctions of Palm Handheld Computers • The 95% confidence interval for the mean sales price for the bidding only option is: (220.70, 242.52)

  38. Example: eBay Auctions of Palm Handheld Computers • Notice that the two intervals overlap a great deal: • “Buy-it-now”:(220.03, 247.11) • Bidding only: (220.70, 242.52) • There is not enough information for us to conclude that one probability distribution clearly has a higher mean than the other

  39. How Do We Find a t- Confidence Interval for Other Confidence Levels? • The 95% confidence interval uses t.025 since 95% of the probability falls between - t.025 and t.025 • For 99% confidence, the error probability is 0.01 with 0.005 in each tail and the appropriate t-score is t.005

  40. If the Population is Not Normal, is the Method “Robust”? • A basic assumption of the confidence interval using the t-distribution is that the population distribution is normal • Many variables have distributions that are far from normal

  41. If the Population is Not Normal, is the Method “Robust”? • How problematic is it if we use the t- confidence interval even if the population distribution is not normal?

  42. If the Population is Not Normal, is the Method “Robust”? • For large random samples, it’s not problematic • The Central Limit Theorem applies: for large n, the sampling distribution is bell-shaped even when the population is not

  43. If the Population is Not Normal, is the Method “Robust”? • What about a confidence interval using the t-distribution when n is small? • Even if the population distribution is not normal, confidence intervals using t-scores usually work quite well • We say the t-distribution is a robust method in terms of the normality assumption

  44. Cases Where the t- Confidence Interval Does Not Work • With binary data • With data that contain extreme outliers

  45. The Standard Normal Distribution is the t-Distribution with df = ∞

  46. The 2002 GSS asked: “What do you think is the ideal number of children in a family?” • The 497 females who responded had a median of 2, mean of 3.02, and standard deviation of 1.81. What is the point estimate of the population mean? • 497 • 2 • 3.02 • 1.81

More Related