1 / 10

Section 7.2

Section 7.2. Solving Absolute Value Equations. Solving Absolute Value Equations. Def. Absolute value represents the distance a number is from 0. Thus, it is always positive. Absolute value is denoted by the bars |x|. 5 and -5 have the same absolute value.

Download Presentation

Section 7.2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Section 7.2 Solving Absolute Value Equations

  2. Solving Absolute Value Equations Def. Absolute value represents the distance a number is from 0. Thus, it is always positive. • Absolute value is denoted by the bars |x|. • 5 and -5 have the same absolute value. • The symbol |x| represents the absolute value of the number x. |8| = 8 and |-8| = 8

  3. Examples: • Ex1: Ex2: Ex3:

  4. Evaluate expressions that contain absolute value symbols. • Think of the | | bars as grouping symbols. • Evaluate |9x -3| + 5 if x = -2 |9(-2) -3| + 5 |-18 -3| + 5 |-21| + 5 21+ 5=26

  5. Solving absolute value equations • First, isolate the absolute value expression. • Set up two equations to solve. • For the first equation, drop the absolute value bars and solve the equation. • For the second equation, drop the bars, negate the opposite side, and solve the equation. • Always check the solutions.

  6. Example: • When solving an equation, isolate the absolute value expression first. • Rewrite the equation as two separate equations. • Solve each equation. • Always check your solutions. Example: Solve |x + 8| = 3 x + 8 = 3 and x + 8 = -3 x = -5 x = -11 Check: |x + 8| = 3 |-5 + 8| = 3 |-11 + 8| = 3 |3| = 3 |-3| = 3 3 = 3 3 = 3

  7. Examples: • Ex4: Ex5:

  8. Special Notes: • |3d - 9| + 6 = 0 First isolate the variable by subtracting 6 from both sides. |3d - 9| = -6 There is no need to go any further with this problem! • Absolute value is never negative. • Therefore, the solution is the empty set!

  9. 6|5x + 2| = 312 • Isolate the absolute value expression by dividing by 6. 6|5x + 2| = 312 |5x + 2| = 52 • Set up two equations to solve. • 5x + 2 = 52 5x + 2 = -52 • 5x = 50 5x = -54 • x = 10 or x = -10.8 • Check:6|5x + 2| = 312 6|5x + 2| = 312 • 6|5(10)+2| = 312 6|5(-10.8)+ 2| = 312 • 6|52| = 312 6|-52| = 312 • 312 = 312 312 = 312

  10. 3|x + 2| -7 = 14 • Isolate the absolute value expression by adding 7 and dividing by 3. 3|x + 2| -7 = 14 3|x + 2| = 21 |x + 2| = 7 • Set up two equations to solve. • x + 2 = 7x + 2 = -7 • x = 5 or x = -9 • Check:3|x + 2| - 7 = 14 3|x + 2| -7 = 14 • 3|5 + 2| - 7 = 14 3|-9+ 2| -7 = 14 3|7| - 7 = 14 3|-7| -7 = 14 • 21 - 7 = 14 21 - 7 = 14 • 14 = 14 14 = 14

More Related