380 likes | 517 Views
DSGE 3. april 2008. Whole Genome Association Studies Overview Professor Torben A. Kruse Department of Biochemistry, Pharmacology og Genetics Odense University Hospital og Human MicroArray Centre OUH / SDU. Mendelian - Monogenic. Specific variation, GENE A . DISEASE A. Multifactoriel.
E N D
DSGE 3. april 2008 Whole Genome Association Studies Overview Professor Torben A. Kruse Department of Biochemistry, Pharmacology og Genetics Odense University Hospital og Human MicroArray Centre OUH / SDU
Mendelian - Monogenic Specific variation, GENE A DISEASE A
Multifactoriel Variant GENE A + Variant GENE B + Variant GENE C + Environmental factor F SYGDOM A Variant GENE A + Variant GENE D + Variant GENE E + Environmental factor G SYGDOM A
STRATEGIES FOR IDENTIFICATION OF DISEASE GENES • Extended families - linkage analysis major gene • Affected sibpair analysis • Shared segment analysis • Association studies minor gene • Cytogenetics
1980’s Development of DNA-markers
T. Alitalo et al Am.Jour.Hum.Genet 1988
Genohype seduction • >1000 Mendelian disease genes identified • Some major biological pathways/mechanisms identified • Human Genome Sequence
Few generations Many generations IBD mapping Shared segment Linkage disequilibrium Association
GWA in isolated population, Faroe Islands: Bipolar affective disorder, H. Ewald et al 1999 Schizophrenia, H.Ewald et al 2002 Autism, M Lauritzen et al 2006 Panic disorder, A. Wang et al 2006 GWA in outbread population at Human MicroArray Centre: Rhinitis (hayfever), allergy: Ass.prof. Charlotte Brasch-Andersen Bone mass: Claus Brasen, MD Depression symptomatology: Assoc.prof Lene Christiansen Hand grip strength: Assoc.prof Lene Christiansen
Genome-wide association (GWA) has been facilitated by the advent of:
SNP typing 1988: 1 SNP in 100 sec (240 genotypes/day) 2008: 1 SNP in 0.001 sec
GENOME-WIDE ASSOCIATION • Technology: • Affymetrix: random; 500K, 1000K • Illumina: “haplotype tagging”; 300K, 550K, 1000K • Perlegen: “haplotype tagging” (Affy-like technology): 200-300K ht SNPs, 800K ht+singleton SNPs
Diabetes mellitus (h2=0.6-1.0) Schizophrenia (h2=0.7) Perinatal disorders COPD (h2=0.6) Self-inflicted injury Unipolar depression (h2=0.5) Dementia (h2=0.4) Lung cancer Cerebrovascular disease Osteoarthritis Alcohol abuse (h2=0.4) Road traffic accidents Major causes of disability(Dalys, Murray & Lopez, 1996) Ischaemic heart disease (h2=0.3-0.6) Congenital anomalies (h2=0.5-0.8)
Alleles A B C D... Genes CD/CV hypothesis Genetic architecture of disease • Common disease/ common variant model(Lander, 1996; Reich & Lander 2001) • genetic risk for common diseases due to high frequency alleles
CD/CV hypothesis • Alzheimer disease APOE (4, 2) (0.15, 0.05-0.1) (OR=3, 0.5) • AIDS CCR5 (32-BP) (0.09) (RR=0.65-<0.1) • Type 1 diabetes mellitus DQB1*0201-DRB1*03/ DQB1*0302-DRB1*0401 (0.05) (RR=20) IL12B 3’UTR allele 1 (0.79) (RR<1.5) • Type 2 diabetes mellitus PPARG Pro12Ala (0.85, RR=1.25) CAPN10 112/121 (0.03-0.29) (RR 3-5) • Venous thrombosis F5 R506Q (0.02-0.08) (RR=4-5)
Ankylosing spondylitis HLA-B*2702,04,05 (0.09) (OR=170) • Breast cancer BRCA2 N372H (0.22-0.29) (RR=1.31) • Prostate cancer ELAC2 S217L (0.30) (RR=1.3) • Neural tube defect PDGFRA H1/H2 haplos. (0.23)(RR=1.3) • Crohn’s disease NOD2 3020insC (0.04) (RR=2) • Haemolytic anaemia G6PD V68M/N126D (A-) (~0.20 Africa) HBB E6K (HbC) (0.09 W.Africa) • Haemochromatosis HFE C282Y (0.05) (RR=26) CD/CV hypothesis
Conclusions: • Some new genes are identified • SNPs show very modest effects • Only partial overlap between SNPs identified in different GWAs (same phenotype) • No evidence for stronger association to sub-phenotypes
Conclusions cont. • Several associations outside transcriptional units • Identified SNPs only explain a small fraction of genetic contribution (power?? model??)
Multilocus/multiallele hypothesis many disease alleles at many loci the rule(common and rare diseases) recent allelic diversity predominates over old Genes A B C D E F G H I J K L…. Alleles
Mendelian subsets of common disorders - allelic and locus heterogeneity • Ischaemic heart LDLR > 735 alleles disease APOB >2 [R3500Q 1:500] • Alzheimer disease APP, PS1, PS2 all multi-allelic • Breast cancer BRCA1 > 865 alleles BRCA2 > 450 alleles • Chronic obstructive CFTR > 963 alleles (DF508) pulmonary disease PI (20 alleles, PI*Z 1-2%) • Colorectal cancer MSH2, MLH1 all multi-allelic • Haemolytic anaemia HBB > 100 alleles
Is GWA the end of things ?………..No • *Tagging approach with SNPs (incl. imputation 3 mio HapMap SNPs) • - Current GWA formats can identify common variants (>5-10%) with OR’s > 1.1 (in sufficiently powered samples) • - GWA will not identify rare variants (<1-5%) • Copy Number Variations CNV • Epigenetics: e.g. methylation patterns • Genetic Genomics: link with mRNA expression) • *Technological developments: • - Genome-wide sequencing techniques*: • - 454, Solexa, ABI • *Machines > € 500 K; Currently >30 million base pairs per run
Genetics in perspective Proportion of cases attributable to smoking • 90% of lung cancer • 90% of larynx cancer • 30-70% bladder cancer • 80% of chronic bronchitis • 12.5% of coronary artery disease Vineis et al. (2001) • High familial risk (S >30) • Low familial risk (S < 3) diagnosis counselling prediction prevention biological insights