200 likes | 215 Views
Dive into the world of multiscale methods in statistics with insights on research interests, selected publications, lab members, and current projects. Discover research themes like spatio-temporal multiscale transform, robust PCA, and extreme PM10 prediction.
E N D
Lab Introduction:Multiscale Methods in Statistics Lab. First Year Graduate Student Seminar May 16, Spring 2016
Contents • Introduction • Lab members • Research themes & Activities
Members: Professor • Hee-Seok Oh • Research interests: multiscale methods in statistics, function estimation, time series, statistical climatology • Selected publications • Composite quantile periodogramfor spectral analysis • Quantile-based empirical mode decomposition • Thick-pen transform for time series • The role of pseudo data for robust smoothing with application to wavelet regression • Estimation of global temperature fields from scattered observations by a spherical wavelet based spatially adaptive method
Members: Current students • 3 Ph.D. course students • Guebin Choi, Seoncheol Park, Youjung Jo • 4 M.S. course students • HyejinYoo, Junhyeon Kwon, Jung-Eum Kim, Miyeon Kim
Members: Alumni • 5 past Ph.D. course students • University (1), Statistics Korea (1), Research institute (2), Post Doc. (1) • 13 past M.S. course students • Study abroad (3),Public enterprises(4),Research institute (1),Industry (5)
Research themes • Multiscale transform • Asymmetric norm problem • Application problem
Research themes • Multiscale transform • Directional wavelet transform for scattered data • Elastic-band transform • Thick-pen transform • Spatio-temporal multiscale transform
Research themes • Directional wavelet transform for scattered data (Hee-Seok Oh)
Research themes • Elastic Band(Guebin Choi)
Research themes • Spatio-temporal multiscale transform(Seoncheol Park)
Research themes • Asymmetric norm problem • Data-adaptive PCA • Unified framework for robust PCA • Composite quantile periodogram • Robust PCA in frequency domain • Data-adaptive factor analysis
Research themes • Robust PCA(Jung-EumKim)
Research themes • Data-adaptive factor analysis (Junhyeon Kwon)
Research themes • Application problem • Seasonal climate prediction • Extreme PM10 prediction • Multiscale functional clustering
Research themes • Extreme PM10 prediction (Seoncheol Park)
Contact information • Lab location 25-401 & 437 • Guebin Choi gbchoi0914@gmail.com • Seoncheol Park pscstat@gmail.com • Youjung Jo jyj0702@snu.ac.kr • HyejinYoopoplady@naver.com • Junhyeon Kwon junhyeonkwon@gmail.com • Jung-Eum Kim snukingdom@gmail.com • Miyeon Kim miyeon3110@nate.com
Thank You 감사합니다