E N D
GEOMETRY “Wheel of Fortune“ is a registered trademarks of Califon Productions, Inc., which is part of Sony Digital Pictures, Inc.. www.gameshowtemplates.weebly.com does not claim credit for the “Wheel of Fortune” title or the game format. We only use these things to bring you fun review games for the classroom. www.gameshowtemplates.weebly.com does not work in affiliation with Sony Digital Pictures, Inc..
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
100 500 200 LoseaTurn 700 Bankrupt 400 3000 50 600 Take 100 900 Double 300 1000 800
What cross section is formed when a cylinder is cut by a plane parallel to its base? Here is your question
And The Answer Is… A circle
∆CAT ~ ∆DOG C D O G T A Determine the value of x Here is your question x 7 5 10
And The Answer Is… X = 3.5
Bill wants to bisect ∠ABC. He first swings an arc around B and creates points M & N where the arc intersects the angle. Then he swings an arc from point M. What should he do next? Here is your question
And The Answer Is… Without changing the compass setting, swing an arc from point N.
A square pyramid is cut by a plane perpendicular to its base. What type of cross section is formed? Here is your question
And The Answer Is… A triangle
The blue figure has gone through a transformation. What type of transformation has occurred? Here is your question
And The Answer Is… Translation
If Joe wants to create a line perpendicular to FG and through point C, what should he do first? Here is your question
And The Answer Is… Swing an arc from point C that intersects FG twice.
M S P ∆MSP is dilated using a scale factor of 2.25 to create ∆M’S’P’(not shown). What is the length of M’S’? Here is your question 10 25
And The Answer Is… 22.5
If point A, which is located at (-5, 3), is rotated 90 clockwise around the origin, what would point A be after the transformation? Here is your question
And The Answer Is… (3,5)
A B C D If AABCD is rotated along CD, what type of polyhedron is formed? Here is your question
And The Answer Is… A cylinder