1 / 42

SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Nha Trang 2000 Nha Trang, Vietnam, Aug. 14-18, 2000. SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES. * In-Won Lee: Professor, KAIST Man-Cheol Kim: Senior Researcher, KRRI Kyu-Hong Shim: Postdoctoral Researcher, KAIST. OUTLINE.

jerod
Download Presentation

SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nha Trang 2000 Nha Trang, Vietnam, Aug. 14-18, 2000 SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES * In-Won Lee: Professor, KAIST Man-Cheol Kim: Senior Researcher, KRRI Kyu-Hong Shim: Postdoctoral Researcher, KAIST

  2. OUTLINE • PROBLEM DEFINITION • PROPOSED METHOD • NUMERICAL EXAMPLES • CONCLUSIONS Structural Dynamics & Vibration Control Lab., KAIST, Korea

  3. PROBLEM DEFINITION • Dynamic Equation of Motion (1) where : Mass matrix, Positive definite : Damping matrix : Stiffness matrix, Positive semi-definite : Displacement vector : Load vector Structural Dynamics & Vibration Control Lab., KAIST, Korea

  4. Methods of Dynamic Analysis • Step by step integration method • Mode superposition method • Mode Superposition Method • Free vibration analysis should be first performed Structural Dynamics & Vibration Control Lab., KAIST, Korea

  5. Condition of Classical Damping • Example : Rayleigh Damping (2) Structural Dynamics & Vibration Control Lab., KAIST, Korea

  6. Eigenproblem of classical damping systems (3) : Real eigenvalue : Natural frequency : Real eigenvector(mode shape) where - Low in cost - Straightforward Structural Dynamics & Vibration Control Lab., KAIST, Korea

  7. Quadratic eigenproblem of non-classically damped systems (4) where : Complex eigenvalue : Complex eigenvector(mode shape) Structural Dynamics & Vibration Control Lab., KAIST, Korea

  8. (5) where : Complex Eigenvalue : Complex Eigenvector (6) - Very expensive An efficient eigensolution technique of non-classically damped systems is required. Structural Dynamics & Vibration Control Lab., KAIST, Korea

  9. Current Methods for Solving the Non-Classically Damped Eigenproblems • Transformation method: Kaufman (1974) • Perturbation method: Meirovitch et al (1979) • Vector iteration method: Gupta (1974; 1981) • Subspace iteration method: Leung (1995) • Lanczos method: Chen (1993) • Efficient Methods Structural Dynamics & Vibration Control Lab., KAIST, Korea

  10. PROPOSED METHOD • Find p Smallest Eigenpairs Solve Subject to For and : multiple or close roots If p=1, then distinct root where Structural Dynamics & Vibration Control Lab., KAIST, Korea

  11. Relations between and Vectors in the • Subspace of (7) where (8) (9) • Let be the vectors in the subspace of and be orthonormal with respect to, then (10) (11) Structural Dynamics & Vibration Control Lab., KAIST, Korea

  12. Introducing Eq.(10) into Eq.(7) (12) • Let (13) where : Symmetric • Then (14) or (15) or (16) Structural Dynamics & Vibration Control Lab., KAIST, Korea

  13. Multiple or Close Eigenvalues • Multiple eigenvalues case : is a diagonal matrix. Eigenvalues : Eigenvectors : • Close eigenvalues case : is not a diagonal matrix. - Solve the small standard eigenvalue problem. - Get the following eigenpairs. Eigenvalues : Eigenvectors : (13) (10) Structural Dynamics & Vibration Control Lab., KAIST, Korea

  14. Newton-Raphson Technique (17) (18) (19) where (20) (21) : unknown incremental values Structural Dynamics & Vibration Control Lab., KAIST, Korea

  15. Introducing Eqs.(19) and (20) into Eqs.(17) and (18) and neglecting nonlinear terms (22) (23) : residual vector where • Matrix form of Eqs.(22) and (23) (24) Coefficient matrix : • Symmetric • Nonsingular Structural Dynamics & Vibration Control Lab., KAIST, Korea

  16. Modified Newton-Raphson Technique (24) Introducing modified Newton-Raphson technique (25) (19) (20) Coefficient matrix : • Symmetric • Nonsingular Structural Dynamics & Vibration Control Lab., KAIST, Korea

  17. Algorithm of Proposed Method • Step 1: Start with approximate eigenpairs • Step 2: Solve for and • Step 3: Compute Structural Dynamics & Vibration Control Lab., KAIST, Korea

  18. Step 4: Check the error norm. Error norm = • If the error norm is more than the tolerance, then go to Step 2 and if not, go to Step 5. • Step 5: Check if is a diagonal matrix, go to Step 6, if not, go to Step 7. Structural Dynamics & Vibration Control Lab., KAIST, Korea

  19. Step 6: Multiple case • Step 7: Close case • Go to step 8. • Go to step 8. • Step 8: Check the error norm. Error norm = • Stop ! Structural Dynamics & Vibration Control Lab., KAIST, Korea

  20. Initial Values of the Proposed Method • Intermediate results of the iteration methods - Vector iteration method - Subspace iteration method • Results of the approximate methods - Static Condensation method - Lanczos method Structural Dynamics & Vibration Control Lab., KAIST, Korea

  21. NUMERICAL EXAMPLES • Structures • Cantilever beam(distinct) • Grid structure(multiple) • Three-dimensional framed structure(close) • Analysis Methods • Proposed method • Subspace iteration method (Leung 1988) • Lanczos method (Chen 1993) Structural Dynamics & Vibration Control Lab., KAIST, Korea

  22. Comparisons • Solution time(CPU) • Convergence • Convex with 100 MIPS, 200 MFLOPS Structural Dynamics & Vibration Control Lab., KAIST, Korea

  23. Cantilever Beam with Lumped Dampers (Distinct Case) Material Properties Tangential Damper :c = 0.3 Rayleigh Damping : =  = 0.001 Young’s Modulus :1000 Mass Density :1 Cross-section Inertia :1 Cross-section Area :1 System Data Number of Equations :200 Number of Matrix Elements :696 Maximum Half Bandwidths :4 Mean Half Bandwidths :4 1 2 3 4 99 100 101 C 5 Structural Dynamics & Vibration Control Lab., KAIST, Korea

  24. Results of Cantilever Beam Structure (Distinct) Structural Dynamics & Vibration Control Lab., KAIST, Korea

  25. CPU Time for 10 Lowest Eigenpairs, Cantilever Beam Structural Dynamics & Vibration Control Lab., KAIST, Korea

  26. Starting values of proposed method   : 1st, 2nd eigenpairs  : 3rd, 4th eigenpairs  : 5th, 6th eigenpairs  : 7th, 8th eigenpairs  : 9th, 10th eigenpairs  Convergence by Lanczos method(Chen 1993) Cantilever beam (distinct)    Structural Dynamics & Vibration Control Lab., KAIST, Korea

  27.  : Proposed Method  : Subspace Iteration Method (q=2p)  Convergence of the 1st eigenpair Cantilever beam (distinct)  Structural Dynamics & Vibration Control Lab., KAIST, Korea

  28.  : Proposed Method  : Subspace Iteration Method (q=2p) Convergence of the 5th eigenpair Cantilever beam (distinct)   Structural Dynamics & Vibration Control Lab., KAIST, Korea

  29. Grid Structure with Lumped Dampers (Multiple Case) Material Properties Tangential Damper :c = 0.3 Rayleigh Damping : =  = 0.001 Young’s Modulus :1,000 Mass Density :1 Cross-section Inertia :1 Cross-section Area :1 System Data Number of Equations :590 Number of Matrix Elements :8,115 Maximum Half Bandwidths :15 Mean Half Bandwidths :14 100@0.1=10 100@0.1=10 Structural Dynamics & Vibration Control Lab., KAIST, Korea

  30. Results of Grid Structure (Multiple) Structural Dynamics & Vibration Control Lab., KAIST, Korea

  31. CPU Time for 10 Lowest Eigenpairs, Grid Structure Structural Dynamics & Vibration Control Lab., KAIST, Korea

  32. Starting values of proposed method  : 1st, 3rd eigenpairs  : 2nd, 4th eigenpairs  : 5th, 7th eigenpairs  : 6th, 8th eigenpairs  : 9th, 11th eigenpairs  : 10th, 12th eigenpairs   Convergence by Lanczos method(Chen 1993) Grid structure (multiple)     Structural Dynamics & Vibration Control Lab., KAIST, Korea

  33.  : Proposed Method  : Subspace Iteration Method (q=2p) Convergence of the 2nd eigenpair Grid structure (multiple)   Structural Dynamics & Vibration Control Lab., KAIST, Korea

  34.  : Proposed Method  : Subspace Iteration Method (q=2p) Convergence of the 9th eigenpair Grid structure (multiple)   Structural Dynamics & Vibration Control Lab., KAIST, Korea

  35. Three-Dimensional Framed Structure with Lumped Dampers(Close Case) 2@3.01=6.02 2@3=6 6@3.01=18.06 12@3=36 6@3=18 Structural Dynamics & Vibration Control Lab., KAIST, Korea

  36. Material Properties Lumped Damper :c = 12,000.0 Rayleigh Damping : =-0.1755  = 0.02005 Young’s Modulus :2.1E+11 Mass Density :7,850 Cross-section Inertia :8.3E-06 Cross-section Area :0.01 System Data Number of Equations :1,128 Number of Matrix Elements :135,276 Maximum Half Bandwidths :300 Mean Half Bandwidths :120 Structural Dynamics & Vibration Control Lab., KAIST, Korea

  37. Results of Three-Dimensional Frame Structure (Close) Structural Dynamics & Vibration Control Lab., KAIST, Korea

  38. CPU Time for 12 Lowest Eigenpairs, • 3-D. Frame Structure Structural Dynamics & Vibration Control Lab., KAIST, Korea

  39.  : 1st, 2nd eigenpairs  : 3rd, 4th eigenpairs  : 5th, 6th eigenpairs  : 7th, 8th eigenpairs  : 9th, 10th eigenpairs  : 11th, 12th eigenpairs Starting values of proposed method   Convergence by Lanczos method(Chen 1993) 3-D. framed structure (close)     Structural Dynamics & Vibration Control Lab., KAIST, Korea

  40.  : Proposed Method  : Subspace Iteration Method (q=2p) Convergence of the 9th eigenpair 3-D. framed structure (close)   Structural Dynamics & Vibration Control Lab., KAIST, Korea

  41. CONCLUSIONS • The proposed method • is simple • guarantees numerical stability • converges fast. An efficient Eigensolution technique ! Structural Dynamics & Vibration Control Lab., KAIST, Korea

  42. Thank you for your attention. Structural Dynamics & Vibration Control Lab., KAIST, Korea

More Related