1 / 70

Arbitrary Parameter Extraction, Stationary Phase Migration, and Tomographic Velocity Analysis

Arbitrary Parameter Extraction, Stationary Phase Migration, and Tomographic Velocity Analysis. Jing Chen University of Utah. Outline. Parameter Extraction Stationary Phase Migration Tomographic Velocity Analysis Conclusions. Parameter Extraction.

jerold
Download Presentation

Arbitrary Parameter Extraction, Stationary Phase Migration, and Tomographic Velocity Analysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Arbitrary Parameter Extraction, Stationary Phase Migration, and Tomographic Velocity Analysis Jing Chen University of Utah

  2. Outline • Parameter Extraction • Stationary Phase Migration • Tomographic Velocity Analysis • Conclusions

  3. Parameter Extraction Extract specular-ray related parameters from prestack migration S G R

  4. Why Specular-Ray Parameters Needed ? • Prestack Depth Migration • Traveltime Inversion • Tomographic MVA • AVO • Etc...

  5. Prestack Migration Operator Image Aperture Weight Data

  6. Stationary Phase Approximation

  7. Weighted Prestack Migration Operator Image Aperture Weight Data Parameter

  8. Stationary Phase Approximation

  9. Specular-Ray Related Parameters

  10. R Specular-Ray Related Parameters Source Receiver Midpoint Traveltime Reflector Normal Departure Angle Emergence Angle Incidence Angle

  11. Parameter Extraction Synthetic Data Examples: Migrate a COG; Extract Midpoint Coordinates, Traveltimes, and Incidence Angles.

  12. Distance (km) 0 4 8 12 16 0 1 Depth (km) 2 3 4 Kirchhoff Migration of a COG

  13. Distance (km) 0 4 8 12 16 0 1 Depth (km) 2 3 4 Weighted Kirchhoff Migration of a COG Extra Weight

  14. Division of Two COG Images =

  15. COG Incidence Angles Distance (km) 0 8 16 0 20 (Degrees) Depth (km) 10 2 4 0

  16. COG Incidence Angles Distance (km) 0 8 16 0 20 (Degrees) Depth (km) 10 2 4 0

  17. COG Traveltimes Distance (km) 0 8 16 3.5 0 (Seconds) Depth (km) 1.75 2 4 0

  18. COG Traveltimes Distance (km) 0 8 16 3.5 0 (Seconds) Depth (km) 1.75 2 4 0

  19. COG S-R Midpoint Coordinates Distance (km) 0 8 16 20 0 Depth (km) (km) 10 2 4 0

  20. COG S-R Midpoint Coordinates Distance (km) 0 8 16 20 0 Depth (km) (km) 10 2 4 0

  21. Distance (km) 0 4 8 12 16 0 1 Depth (km) 2 3 4 Verification of Extracted Parameters

  22. COG S-R Midpoint Coordinates Distance (km) 0 8 16 20 0 Depth (km) (km) 10 2 4 0

  23. COG Traveltimes Distance (km) 0 8 16 3.5 0 (Seconds) Depth (km) 1.75 2 4 0

  24. Verification of Extracted Parameters Trace Midpoint Coordinates 11 13 15 1 Time (sec) Trvaeltimes Extracted 2

  25. Applications • Stationary Phase Migration • Tomographic Velocity Analysis

  26. Stationary Phase Migration SPM uses specular-ray parameters to : • Migrate traces within Fresnel zone • Reject traces out of Fresnel zone • Suppress alias artifacts

  27. Stationary Phase Migration • Algorithm • Synthetic Data Example • Field Data Example

  28. Stationary Phase Migration Operator Schleicher et al. (1997) : Fresnel zone width Minimum Aperture Fresnel Zone Stationary phase point

  29. Stationary Phase Migration • Algorithm • Synthetic Data Example • Field Data Example

  30. Kirchhoff Migration of a COG Distance (km) 0 4 8 12 16 0 1 2 Depth (km) 3 4

  31. Stationary Phase Mig. of a COG Distance (km) 0 4 8 12 16 0 1 2 Depth (km) 3 4

  32. Migration Operator Trace Contributions

  33. Trace Contributions : KM Trace Number 0 150 300 0 Depth (km) 2 4

  34. Trace Contributions : SPM Trace Number 0 150 300 0 Depth (km) 2 4

  35. Trace Contributions : KM Trace Number 0 150 300 0 Depth (km) 2 4

  36. Trace Contributions : SPM Trace Number 0 150 300 0 Depth (km) 2 4

  37. Trace Contributions : KM Trace Number 0 150 300 0 Depth (km) 2 4

  38. Trace Contributions : SPM Trace Number 0 150 300 0 Depth (km) 2 4

  39. Incidence Angle CIG Offset (km) Offset (km) 0 3 0 3 0 70 0 Depth (km) Depth (km) 35 2 2 4 4 0 (Deg)

  40. Incidence Angle CIG Offset (km) Offset (km) 0 3 0 3 0 70 0 Depth (km) Depth (km) 35 2 2 4 4 0 (Deg)

  41. Stacked SPM Image After Muting Distance (km) 0 4 8 12 16 0 1 2 Depth (km) 3 4

  42. Stacked SPM Image Without Muting Distance (km) 0 4 8 12 16 0 1 2 Depth (km) 3 4

  43. Stationary Phase Migration • Algorithm • Synthetic Data Example • Field Data Example

  44. Kirchhoff Migration of a COG Distance (km) 0 2 4 6 8 10 12 14 0 2 Depth (km) 4 6

  45. Stationary Phase Mig. of a COG Distance (km) 0 2 4 6 8 10 12 14 0 2 Depth (km) 4 6

  46. Stacked KM Image Distance (km) 0 2 4 6 8 10 12 14 0 2 Depth (km) 4 6

  47. Stacked SPM Image Distance (km) 0 2 4 6 8 10 12 14 0 2 Depth (km) 4 6

  48. Stationary Phase Mig. vs Wavepath Mig. S G • Both approaches suppress alias artifacts • WM measures emergence angles in the data domain • SPM extracts parameters in the migration domain • SPM extracts more parameters • WM is faster • SPM may be more robust in parameter estimations

  49. Applications • Stationary Phase Migration • Tomographic Velocity Analysis

  50. Steps in Tomographic MVA • Build up Initial Migration Velocity • Migrate Seismic Data • Obtain S & R Coordinates • Find Specular-Ray Paths • Pick Depth Residual Moveouts • Pick Reflector Positions • Update Velocities • Migrate Seismic Data With • Updated Velocities • Repeat Above Steps

More Related