1 / 24

The French operational radar network

THE NEW FRENCH OPERATIONAL CONVENTIONAL RADAR PRODUCTS Pierre Tabary Centre de Météorologie Radar, Direction des Systèmes d’Observation, Météo France pierre.tabary@meteo.fr. The French operational radar network.

jeslyn
Download Presentation

The French operational radar network

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. THE NEW FRENCH OPERATIONAL CONVENTIONAL RADAR PRODUCTSPierre TabaryCentre de Météorologie Radar, Direction des Systèmes d’Observation, Météo Francepierre.tabary@meteo.fr

  2. The French operational radar network • In 2006 : 24 radars of different wavelength (8 S-band, 16 C-band) and type (GEMATRONIK, THOMSON, …) • All radars are equipped with the same « home-made » radar processor (CASTOR2, See the contribution of Parent-du-Châtelet et al. to the 2001 Radar Conference) • Doppler processing (« staggered-PRT », See Tabary et al., 2005, JAOT) and products are gradually introduced  all radars will be Doppler by 2008; • Polarimetry is currently tested on the Trappes (Paris) radar (See Poster 4.13 by Gourley et al.)  8 polarimetric radars by the end of 2006 ?

  3. Current operational products Rainfall intensity maps ( Surveillance, Nowcasting, Aviation safety, …) • 1 km² x 5 minutes; • Constant pseudo-CAPPI composition; • Dynamical ground-clutter suppression; • No VPR nor partial beam-blocking correction; • Marshall-Palmer Z-R relationship; Single radar (Bollène) Composite (France) 9 September 2002 09.00 UTC • Radar QPE ( Hydrology) • Single radar only; • Available every 15 minutes; • No radar – rain gauge real-time adjustment; 24h accumulation – Toulouse radar – Start = 16 April 2005 06.00 UTC

  4. The new conventional radar products Radar QPE  Hydrology • Pixel-by-pixel composition (Joss and Lee 1995); • VPR correction (Kitchen et al. 1994, Andrieu et al. 1995) • Partial beam blocking correction (orogenic : Delrieu et al. 1995 and non-orogenic : use of long-term accumulations); • Enhanced frequency : 5 minutes ( Urban applications); • Systematic generation of quantitative quality indexes; Single radar Composite Single radar Radar « Detection product »  Nowcasting • Maximum reflectivity along the vertical; • Bright-band correction only; • Partial beam blocking correction ; • Systematic generation of detailled quality indexes; Composite

  5. RR1corr 1 RR2corr 2 RR3corr 3 Courtesy of JJ Gourley (NSSL) RR2 unshielded, not too high, but in the bright band RR3 Unshielded, not in the bright-band, but high 3 The new radar QPE 2 1 ? RR1 low but shielded Correction for VPR, partial beam-blocking, ground-clutter and advection RR1 RR2 RR3 Try to get the best surface estimation from the ith tilt Assign a weight to each estimation RRbest = iiRRicorr / ii best=MAXi(i) Weighted linear combination

  6. The VPR correction Kitchen et al. 1994; Kitchen 1996; Andrieu et al. 1995, Fabry and Zawadzki 1995 Simulate VPR candidates The four parameters can only take a limited number of predetermined, climatology-based values A conceptual four-parameter VPR 3dB beamwidth Simulate – for each VPR candidate - the expected radar observations (ratio curves) Optimal VPR A guess is provided by the model Observed radar measurements (ratio curves) Correction / extrapolation down to ground-level

  7. Comparison of radar-derived Freezing Level Heights with radiosonde 0°C (dry and wet bulb) heights

  8. Illustration of Single-radar QPE 24 h accumulation – 20050206 - Opoul radar Old QPE (HYDRAM) New QPE (PANTHERE) Quality indexes 0 (purple) = excellent 255 (red)= bad Proposed (empirical) formula for the quality index:  = exp[-(h-hterrain) / h0] x (1-T/100)1/1.6 0 if ground-clutter or strongly shielded (T > 70%) with : h = altitude of the beam, h0 = 1 km and T = occultation rate (%)

  9. Are the proposed quality indexes relevant ? Is there a correlation between radar vs. rain gauge scores and the quality indexes ? Nash criterion Corr. coefficient 0 (good) Quality indexes 200 (bad) 0 (good) Quality indexes 200 (bad) 15 episodes included. Each curve corresponds to one episode. The dotted curve is the mean

  10. Illustration of composite QPE 24 h accumulation – 20050206 – 7 radars of Southern France Composite quality index map Applications Composite QPE • NWP QPF verification; • Radar – rain gauge adjustment; • Assimilation in hydrologic models; Rcomposite = jradar Rjradar / jradar composite = MAXjradar(jradar)

  11. The Single-radar and composite « detection product » Attenuation by rain Partial beam blocking Maximum reflectivity 3-level quality index Altitude Bright band correction Advection duration Status of the pixel

  12. The Single-radar and composite « detection product » Attenuation by rain Partial beam blocking Maximum reflectivity 3-level quality index Altitude Bright band correction Advection duration Status of the pixel

  13. The Single-radar and composite « detection product » Attenuation by rain Partial beam blocking Maximum reflectivity 3-level quality index Altitude Bright band correction Advection duration Status of the pixel

  14. The Single-radar and composite « detection product » Attenuation by rain Partial beam blocking Maximum reflectivity 3-level quality index Altitude Bright band correction Advection duration Status of the pixel

  15. The Single-radar and composite « detection product » Attenuation by rain Partial beam blocking Maximum reflectivity 3-level quality index Altitude Bright band correction Advection duration Status of the pixel

  16. The Single-radar and composite « detection product » Attenuation by rain Partial beam blocking Maximum reflectivity 3-level quality index Altitude Bright band correction Advection duration Status of the pixel

  17. The Single-radar and composite « detection product » Attenuation by rain Partial beam blocking Maximum reflectivity 3-level quality index Altitude Bright band correction Advection duration Status of the pixel

  18. The Single-radar and composite « detection product » Attenuation by rain Partial beam blocking Maximum reflectivity 3-level quality index Altitude Bright band correction Advection duration Status of the pixel

  19. The Single-radar and composite « detection product » Attenuation by rain Partial beam blocking Maximum reflectivity 3-level quality index Altitude Bright band correction Advection duration Status of the pixel

  20. The Single-radar and composite « detection product » Attenuation by rain Partial beam blocking Maximum reflectivity 3-level quality index Altitude Bright band correction Advection duration Status of the pixel

  21. The Single-radar and composite « detection product » Attenuation by rain Partial beam blocking Maximum reflectivity 3-level quality index Altitude Bright band correction Advection duration Status of the pixel

  22. The Single-radar and composite « detection product » Attenuation by rain Partial beam blocking Maximum reflectivity 3-level quality index Altitude Bright band correction Advection duration Status of the pixel

  23. The Single-radar and composite « detection product » Attenuation by rain Partial beam blocking Maximum reflectivity 3-level quality index Altitude Bright band correction Advection duration Status of the pixel

  24. Thank you

More Related